cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326028 Number of factorizations of n into factors > 1 with integer geometric mean.

This page as a plain text file.
%I A326028 #15 Nov 10 2024 21:47:48
%S A326028 0,1,1,2,1,1,1,2,2,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,1,
%T A326028 1,5,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,8,1,1,1,1,
%U A326028 1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2
%N A326028 Number of factorizations of n into factors > 1 with integer geometric mean.
%C A326028 First differs from A294336 and A316782 at a(36) = 5.
%H A326028 Antti Karttunen, <a href="/A326028/b326028.txt">Table of n, a(n) for n = 1..100000</a>
%H A326028 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a>
%H A326028 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F A326028 a(2^n) = A067538(n).
%e A326028 The a(4) = 2 through a(36) = 5 factorizations (showing only the cases where n is a perfect power).
%e A326028   (4)    (8)      (9)    (16)       (25)   (27)     (32)         (36)
%e A326028   (2*2)  (2*2*2)  (3*3)  (2*8)      (5*5)  (3*3*3)  (2*2*2*2*2)  (4*9)
%e A326028                          (4*4)                                   (6*6)
%e A326028                          (2*2*2*2)                               (2*18)
%e A326028                                                                  (3*12)
%t A326028 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A326028 Table[Length[Select[facs[n],IntegerQ[GeometricMean[#]]&]],{n,2,100}]
%o A326028 (PARI) A326028(n, m=n, facmul=1, facnum=0) = if(1==n,facnum>0 && ispower(facmul,facnum), my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A326028(n/d, d, facmul*d, facnum+1))); (s)); \\ _Antti Karttunen_, Nov 10 2024
%Y A326028 Positions of terms > 1 are the perfect powers A001597.
%Y A326028 Partitions with integer geometric mean are A067539.
%Y A326028 Subsets with integer geometric mean are A326027.
%Y A326028 Factorizations with integer average and geometric mean are A326647.
%Y A326028 Cf. A001055, A082553, A322794, A326514, A326515, A326516, A326622, A326623, A326624, A326625.
%K A326028 nonn
%O A326028 1,4
%A A326028 _Gus Wiseman_, Jul 15 2019
%E A326028 a(89) onwards from _Antti Karttunen_, Nov 10 2024