This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326028 #15 Nov 10 2024 21:47:48 %S A326028 0,1,1,2,1,1,1,2,2,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,1, %T A326028 1,5,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,8,1,1,1,1, %U A326028 1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2 %N A326028 Number of factorizations of n into factors > 1 with integer geometric mean. %C A326028 First differs from A294336 and A316782 at a(36) = 5. %H A326028 Antti Karttunen, <a href="/A326028/b326028.txt">Table of n, a(n) for n = 1..100000</a> %H A326028 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a> %H A326028 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a> %F A326028 a(2^n) = A067538(n). %e A326028 The a(4) = 2 through a(36) = 5 factorizations (showing only the cases where n is a perfect power). %e A326028 (4) (8) (9) (16) (25) (27) (32) (36) %e A326028 (2*2) (2*2*2) (3*3) (2*8) (5*5) (3*3*3) (2*2*2*2*2) (4*9) %e A326028 (4*4) (6*6) %e A326028 (2*2*2*2) (2*18) %e A326028 (3*12) %t A326028 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A326028 Table[Length[Select[facs[n],IntegerQ[GeometricMean[#]]&]],{n,2,100}] %o A326028 (PARI) A326028(n, m=n, facmul=1, facnum=0) = if(1==n,facnum>0 && ispower(facmul,facnum), my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A326028(n/d, d, facmul*d, facnum+1))); (s)); \\ _Antti Karttunen_, Nov 10 2024 %Y A326028 Positions of terms > 1 are the perfect powers A001597. %Y A326028 Partitions with integer geometric mean are A067539. %Y A326028 Subsets with integer geometric mean are A326027. %Y A326028 Factorizations with integer average and geometric mean are A326647. %Y A326028 Cf. A001055, A082553, A322794, A326514, A326515, A326516, A326622, A326623, A326624, A326625. %K A326028 nonn %O A326028 1,4 %A A326028 _Gus Wiseman_, Jul 15 2019 %E A326028 a(89) onwards from _Antti Karttunen_, Nov 10 2024