This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326029 #9 Jun 27 2020 03:05:38 %S A326029 0,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,3,3,1,1,1,1,3,1,2,1,3,1,1,2, %T A326029 3,1,3,1,1,3,6,1,3,1,2,1,1,1,3,1,6,1,5,1,2,2,2,4,3,1,9,1,1,3,1,1,4,1, %U A326029 4,2,6,1,6,1,3,7,4,2,5,1,10,1,3,1,9,3 %N A326029 Number of strict integer partitions of n whose mean and geometric mean are both integers. %H A326029 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a> %e A326029 The a(55) = 2 through a(60) = 9 partitions: %e A326029 (55) (56) (57) (58) (59) (60) %e A326029 (27,16,9,2,1) (24,18,8,6) (49,7,1) (49,9) (54,6) %e A326029 (27,25,5) (50,8) (48,12) %e A326029 (27,18,12) (27,24,9) %e A326029 (27,24,6,2,1) %e A326029 (36,12,9,2,1) %e A326029 (36,9,6,4,3,2) %e A326029 (24,18,9,6,2,1) %e A326029 (27,16,9,4,3,1) %t A326029 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,30}] %Y A326029 Partitions with integer mean and geometric mean are A326641. %Y A326029 Strict partitions with integer mean are A102627. %Y A326029 Strict partitions with integer geometric mean are A326625. %Y A326029 Non-constant partitions with integer mean and geometric mean are A326641. %Y A326029 Subsets with integer mean and geometric mean are A326643. %Y A326029 Heinz numbers of partitions with integer mean and geometric mean are A326645. %Y A326029 Cf. A051293, A067538, A067539, A078175, A082553, A316413, A326027, A326623, A326644, A326646, A326647. %K A326029 nonn %O A326029 0,11 %A A326029 _Gus Wiseman_, Jul 16 2019 %E A326029 More terms from _Jinyuan Wang_, Jun 26 2020