cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326029 Number of strict integer partitions of n whose mean and geometric mean are both integers.

This page as a plain text file.
%I A326029 #9 Jun 27 2020 03:05:38
%S A326029 0,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,3,3,1,1,1,1,3,1,2,1,3,1,1,2,
%T A326029 3,1,3,1,1,3,6,1,3,1,2,1,1,1,3,1,6,1,5,1,2,2,2,4,3,1,9,1,1,3,1,1,4,1,
%U A326029 4,2,6,1,6,1,3,7,4,2,5,1,10,1,3,1,9,3
%N A326029 Number of strict integer partitions of n whose mean and geometric mean are both integers.
%H A326029 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a>
%e A326029 The a(55) = 2 through a(60) = 9 partitions:
%e A326029   (55)           (56)         (57)        (58)    (59)  (60)
%e A326029   (27,16,9,2,1)  (24,18,8,6)  (49,7,1)    (49,9)        (54,6)
%e A326029                               (27,25,5)   (50,8)        (48,12)
%e A326029                               (27,18,12)                (27,24,9)
%e A326029                                                         (27,24,6,2,1)
%e A326029                                                         (36,12,9,2,1)
%e A326029                                                         (36,9,6,4,3,2)
%e A326029                                                         (24,18,9,6,2,1)
%e A326029                                                         (27,16,9,4,3,1)
%t A326029 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,30}]
%Y A326029 Partitions with integer mean and geometric mean are A326641.
%Y A326029 Strict partitions with integer mean are A102627.
%Y A326029 Strict partitions with integer geometric mean are A326625.
%Y A326029 Non-constant partitions with integer mean and geometric mean are A326641.
%Y A326029 Subsets with integer mean and geometric mean are A326643.
%Y A326029 Heinz numbers of partitions with integer mean and geometric mean are A326645.
%Y A326029 Cf. A051293, A067538, A067539, A078175, A082553, A316413, A326027, A326623, A326644, A326646, A326647.
%K A326029 nonn
%O A326029 0,11
%A A326029 _Gus Wiseman_, Jul 16 2019
%E A326029 More terms from _Jinyuan Wang_, Jun 26 2020