This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326032 #7 Jul 23 2019 15:54:09 %S A326032 0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,2,2, %T A326032 3,3,3,3,4,4,4,4,5,5,5,5,6,6,3,3,4,4,4,4,5,5,5,5,6,6,6,6,7,7,2,2,3,3, %U A326032 3,3,4,4,4,4,5,5,5,5,6,6,3,3,4,4,4,4,5 %N A326032 a(2^x + ... + 2^z) = w(x) + ... + w(z), where x...z are distinct nonnegative integers and w = A000120. %C A326032 From _Robert Israel_, Jul 23 2019: (Start) %C A326032 a(2*n+1)=a(2*n). %C A326032 a(n)=1 if and only if n > 1 is in A283526. (End) %e A326032 For example, a(6) = a(2^2 + 2^1) = w(2) + w(1) = 2. %p A326032 Bwt:= proc(n) option remember; convert(convert(n,base,2),`+`) end proc: %p A326032 f:= proc(n) local L,i; %p A326032 L:= convert(n,base,2); %p A326032 add(L[i]*Bwt(i-1),i=1..nops(L)) %p A326032 end proc: %p A326032 map(f, [$0..100]); # _Robert Israel_, Jul 23 2019 %t A326032 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A326032 Table[Total[Length/@bpe/@(bpe[n]-1)],{n,0,100}] %Y A326032 Other sequences that are built by replacing 2^k in the binary representation with other numbers: A022290 (Fibonacci), A059590 (factorials), A073642, A089625 (primes), A116549, A326031. %Y A326032 Cf. A000120, A029931, A035327, A048793, A070939, A283526, A305830, A326031, A326669, A326702. %K A326032 nonn %O A326032 0,7 %A A326032 _Gus Wiseman_, Jul 22 2019