This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326033 #7 Jun 04 2019 08:37:03 %S A326033 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,0,1,1,0,3,0,0,1,1,0,8,0, %T A326033 8,4,3,0,11,5,3,4,5,0,30,2,9,9,20,3,37,6,18,16,37,20,71,12,37,40 %N A326033 Number of knapsack partitions of n such that no addition of one part equal to an existing part is knapsack. %C A326033 An integer partition is knapsack if every distinct submultiset has a different sum. %e A326033 The partition (10,8,6,6) is counted under a(30) because (10,10,8,6,6), (10,8,8,6,6), and (10,8,6,6,6) are not knapsack. %t A326033 sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])]; %t A326033 ksQ[y_]:=Length[sums[Sort[y]]]==Times@@(Length/@Split[Sort[y]]+1)-1; %t A326033 maxks[n_]:=Select[IntegerPartitions[n],ksQ[#]&&Select[Table[Sort[Append[#,i]],{i,Union[#]}],ksQ]=={}&]; %t A326033 Table[Length[maxks[n]],{n,30}] %Y A326033 Cf. A002033, A108917, A275972, A276024, A299702. %Y A326033 Cf. A325857, A325862, A325863, A325864, A325865, A326015, A326016, A326018. %K A326033 nonn,more %O A326033 1,21 %A A326033 _Gus Wiseman_, Jun 03 2019