This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326035 #9 May 09 2021 16:32:53 %S A326035 1,1,2,3,4,4,6,6,9,10,12,12,17,16,20,25,27,29,35,39,44,57,53,66,75,84, %T A326035 84,114,112,131,133,162,167,209,192,242,250,289,279,363,348,417,404, %U A326035 502,487,608,557,706,682,835,773,1004,922,1149,1059,1344,1257,1595 %N A326035 Number of uniform knapsack partitions of n. %C A326035 An integer partition is uniform if all parts appear with the same multiplicity, and knapsack if every distinct submultiset has a different sum. %H A326035 Fausto A. C. Cariboni, <a href="/A326035/b326035.txt">Table of n, a(n) for n = 0..650</a> %e A326035 The a(1) = 1 through a(8) = 9 partitions: %e A326035 (1) (2) (3) (4) (5) (6) (7) (8) %e A326035 (11) (21) (22) (32) (33) (43) (44) %e A326035 (111) (31) (41) (42) (52) (53) %e A326035 (1111) (11111) (51) (61) (62) %e A326035 (222) (421) (71) %e A326035 (111111) (1111111) (521) %e A326035 (2222) %e A326035 (3311) %e A326035 (11111111) %t A326035 sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])]; %t A326035 ks[n_]:=Select[IntegerPartitions[n],Length[sums[Sort[#]]]==Times@@(Length/@Split[#]+1)-1&]; %t A326035 Table[Length[Select[ks[n],SameQ@@Length/@Split[#]&]],{n,30}] %Y A326035 Cf. A002033, A047966, A072774, A108917, A275972, A276024, A299702. %Y A326035 Cf. A325592, A325858, A326015, A326016, A326017, A326036, A326037. %K A326035 nonn %O A326035 0,3 %A A326035 _Gus Wiseman_, Jun 04 2019