cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326035 Number of uniform knapsack partitions of n.

This page as a plain text file.
%I A326035 #9 May 09 2021 16:32:53
%S A326035 1,1,2,3,4,4,6,6,9,10,12,12,17,16,20,25,27,29,35,39,44,57,53,66,75,84,
%T A326035 84,114,112,131,133,162,167,209,192,242,250,289,279,363,348,417,404,
%U A326035 502,487,608,557,706,682,835,773,1004,922,1149,1059,1344,1257,1595
%N A326035 Number of uniform knapsack partitions of n.
%C A326035 An integer partition is uniform if all parts appear with the same multiplicity, and knapsack if every distinct submultiset has a different sum.
%H A326035 Fausto A. C. Cariboni, <a href="/A326035/b326035.txt">Table of n, a(n) for n = 0..650</a>
%e A326035 The a(1) = 1 through a(8) = 9 partitions:
%e A326035   (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
%e A326035        (11)  (21)   (22)    (32)     (33)      (43)       (44)
%e A326035              (111)  (31)    (41)     (42)      (52)       (53)
%e A326035                     (1111)  (11111)  (51)      (61)       (62)
%e A326035                                      (222)     (421)      (71)
%e A326035                                      (111111)  (1111111)  (521)
%e A326035                                                           (2222)
%e A326035                                                           (3311)
%e A326035                                                           (11111111)
%t A326035 sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])];
%t A326035 ks[n_]:=Select[IntegerPartitions[n],Length[sums[Sort[#]]]==Times@@(Length/@Split[#]+1)-1&];
%t A326035 Table[Length[Select[ks[n],SameQ@@Length/@Split[#]&]],{n,30}]
%Y A326035 Cf. A002033, A047966, A072774, A108917, A275972, A276024, A299702.
%Y A326035 Cf. A325592, A325858, A326015, A326016, A326017, A326036, A326037.
%K A326035 nonn
%O A326035 0,3
%A A326035 _Gus Wiseman_, Jun 04 2019