This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326036 #4 Jun 04 2019 08:37:27 %S A326036 1,1,1,2,1,1,3,2,2,2,2,2,6,3,3,5,5,3,8,5,11,10,10,9,19,13,15,17,21,18, %T A326036 35,26,39,40,50,50,77,63,84,88,113,103,146,132,171,180,212,214,292, %U A326036 276,345,363,435,442,561,569,694,729,853,891,1108 %N A326036 Number of uniform complete integer partitions of n. %C A326036 An integer partition of n is uniform if all parts appear with the same multiplicity, and complete if every nonnegative integer up to n is the sum of some submultiset. %e A326036 The initial terms count the following partitions: %e A326036 0: () %e A326036 1: (1) %e A326036 2: (11) %e A326036 3: (21) %e A326036 3: (111) %e A326036 4: (1111) %e A326036 5: (11111) %e A326036 6: (321) %e A326036 6: (2211) %e A326036 6: (111111) %e A326036 7: (421) %e A326036 7: (1111111) %e A326036 8: (3311) %e A326036 8: (11111111) %e A326036 9: (222111) %e A326036 9: (111111111) %e A326036 10: (4321) %e A326036 10: (1111111111) %e A326036 11: (5321) %e A326036 11: (11111111111) %t A326036 sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])]; %t A326036 Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[#]&&Sort[sums[Sort[#]]]==Range[Total[#]]&]],{n,0,30}] %Y A326036 Cf. A002033, A047966, A072774, A108917, A126796, A188431, A276024. %Y A326036 Cf. A325781, A325791, A325988, A326020, A326035, A326037. %K A326036 nonn %O A326036 0,4 %A A326036 _Gus Wiseman_, Jun 04 2019