This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326037 #4 Jun 04 2019 08:37:40 %S A326037 1,2,4,6,8,16,32,42,64,100,128,256,512,798,1024,2048,2744,4096,8192, %T A326037 16384,32768,42294,52900,65536 %N A326037 Heinz numbers of uniform perfect integer partitions. %C A326037 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A326037 An integer partition of n is uniform if all parts appear with the same multiplicity, and perfect if every nonnegative integer up to n is the sum of a unique submultiset. %C A326037 The enumeration of these partitions by sum is given by A089723. %F A326037 Intersection of A072774 (uniform), A299702 (knapsack), and A325781 (complete). %e A326037 The sequence of all uniform perfect integer partitions together with their Heinz numbers begins: %e A326037 1: () %e A326037 2: (1) %e A326037 4: (11) %e A326037 6: (21) %e A326037 8: (111) %e A326037 16: (1111) %e A326037 32: (11111) %e A326037 42: (421) %e A326037 64: (111111) %e A326037 100: (3311) %e A326037 128: (1111111) %e A326037 256: (11111111) %e A326037 512: (111111111) %e A326037 798: (8421) %e A326037 1024: (1111111111) %e A326037 2048: (11111111111) %e A326037 2744: (444111) %e A326037 4096: (111111111111) %e A326037 8192: (1111111111111) %e A326037 16384: (11111111111111) %t A326037 hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; %t A326037 Select[Range[1000],SameQ@@Last/@FactorInteger[#]&&Sort[hwt/@Divisors[#]]==Range[0,hwt[#]]&] %Y A326037 Cf. A002033, A047966, A070941, A072774, A108917, A126796, A276024, A299702. %Y A326037 Cf. A325780, A325781, A326020, A326035, A326036. %K A326037 nonn,more %O A326037 1,2 %A A326037 _Gus Wiseman_, Jun 04 2019