cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326064 Odd composite numbers n, not squares of primes, such that (A001065(n) - A032742(n)) divides (n - A032742(n)), where A032742 gives the largest proper divisor, and A001065 is the sum of proper divisors.

This page as a plain text file.
%I A326064 #24 Dec 24 2020 04:48:12
%S A326064 117,775,10309,56347,88723,2896363,9597529,12326221,12654079,25774633,
%T A326064 29817121,63455131,105100903,203822581,261019543,296765173,422857021,
%U A326064 573332713,782481673,900952687,1129152721,3350861677,3703086229,7395290407,9347001661,9350506057
%N A326064 Odd composite numbers n, not squares of primes, such that (A001065(n) - A032742(n)) divides (n - A032742(n)), where A032742 gives the largest proper divisor, and A001065 is the sum of proper divisors.
%C A326064 Nineteen initial terms factored:
%C A326064    n       a(n)   factorization   A060681(a(n))/A318505(a(n))
%C A326064    1:       117 =   3^2 *    13,           (3)
%C A326064    2:       775 =   5^2 *    31,          (10)
%C A326064    3:     10309 =  13^2 *    61,          (39)
%C A326064    4:     56347 =  29^2 *    67,          (58)
%C A326064    5:     88723 =  17^2 *   307,         (136)
%C A326064    6:   2896363 =  41^2 *  1723,         (820)
%C A326064    7:   9597529 =  73^2 *  1801,        (1314)
%C A326064    8:  12326221 =  59^2 *  3541,        (1711)
%C A326064    9:  12654079 = 113^2 *   991,         (904)
%C A326064   10:  25774633 =  71^2 *  5113,        (2485)
%C A326064   11:  29817121 =  97^2 *  3169,        (2328)
%C A326064   12:  63455131 =  89^2 *  8011,        (3916)
%C A326064   13: 105100903 = 101^2 * 10303,        (5050)
%C A326064   14: 203822581 = 157^2 *  8269,        (6123)
%C A326064   15: 261019543 = 349^2 *  2143,        (2094)
%C A326064   16: 296765173 = 131^2 * 17293,        (8515)
%C A326064   17: 422857021 = 233^2 *  7789,        (6757)
%C A326064   18: 573332713 = 331^2 *  5233,        (4965)
%C A326064   19: 782481673 = 167^2 * 28057,       (13861).
%C A326064 Note how the quotient (in the rightmost column) seems always to be a multiple of non-unitary prime factor and less than the unitary prime factor.
%C A326064 For p, q prime, if p^2+p+1 = kq and k+1|p-1, then p^2*q is in this sequence. - _Charlie Neder_, Jun 09 2019
%H A326064 <a href="/index/O#opnseqs">Index entries for sequences where any odd perfect numbers must occur</a>
%H A326064 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%t A326064 Select[Range[15, 10^6 + 1, 2], And[! PrimePowerQ@ #1, Mod[#1 - #2, #2 - #3] == 0] & @@ {#, DivisorSigma[1, #] - #, Divisors[#][[-2]]} &] (* _Michael De Vlieger_, Jun 22 2019 *)
%o A326064 (PARI)
%o A326064 A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
%o A326064 A060681(n) = (n-A032742(n));
%o A326064 A318505(n) = if(1==n,0,(sigma(n)-A032742(n))-n);
%o A326064 isA326064(n) = if((n%2)&&(2!=isprimepower(n)), my(s=A032742(n), t=sigma(n)-s); (gcd(t-n, n-A032742(n)) == t-n), 0);
%Y A326064 Subsequence of A326063.
%Y A326064 Cf. A032742, A060681, A246282, A318505.
%Y A326064 Cf. also A228058, A325981, A326131, A326141.
%K A326064 nonn
%O A326064 1,1
%A A326064 _Antti Karttunen_, Jun 06 2019
%E A326064 More terms from _Amiram Eldar_, Dec 24 2020