This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326064 #24 Dec 24 2020 04:48:12 %S A326064 117,775,10309,56347,88723,2896363,9597529,12326221,12654079,25774633, %T A326064 29817121,63455131,105100903,203822581,261019543,296765173,422857021, %U A326064 573332713,782481673,900952687,1129152721,3350861677,3703086229,7395290407,9347001661,9350506057 %N A326064 Odd composite numbers n, not squares of primes, such that (A001065(n) - A032742(n)) divides (n - A032742(n)), where A032742 gives the largest proper divisor, and A001065 is the sum of proper divisors. %C A326064 Nineteen initial terms factored: %C A326064 n a(n) factorization A060681(a(n))/A318505(a(n)) %C A326064 1: 117 = 3^2 * 13, (3) %C A326064 2: 775 = 5^2 * 31, (10) %C A326064 3: 10309 = 13^2 * 61, (39) %C A326064 4: 56347 = 29^2 * 67, (58) %C A326064 5: 88723 = 17^2 * 307, (136) %C A326064 6: 2896363 = 41^2 * 1723, (820) %C A326064 7: 9597529 = 73^2 * 1801, (1314) %C A326064 8: 12326221 = 59^2 * 3541, (1711) %C A326064 9: 12654079 = 113^2 * 991, (904) %C A326064 10: 25774633 = 71^2 * 5113, (2485) %C A326064 11: 29817121 = 97^2 * 3169, (2328) %C A326064 12: 63455131 = 89^2 * 8011, (3916) %C A326064 13: 105100903 = 101^2 * 10303, (5050) %C A326064 14: 203822581 = 157^2 * 8269, (6123) %C A326064 15: 261019543 = 349^2 * 2143, (2094) %C A326064 16: 296765173 = 131^2 * 17293, (8515) %C A326064 17: 422857021 = 233^2 * 7789, (6757) %C A326064 18: 573332713 = 331^2 * 5233, (4965) %C A326064 19: 782481673 = 167^2 * 28057, (13861). %C A326064 Note how the quotient (in the rightmost column) seems always to be a multiple of non-unitary prime factor and less than the unitary prime factor. %C A326064 For p, q prime, if p^2+p+1 = kq and k+1|p-1, then p^2*q is in this sequence. - _Charlie Neder_, Jun 09 2019 %H A326064 <a href="/index/O#opnseqs">Index entries for sequences where any odd perfect numbers must occur</a> %H A326064 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %t A326064 Select[Range[15, 10^6 + 1, 2], And[! PrimePowerQ@ #1, Mod[#1 - #2, #2 - #3] == 0] & @@ {#, DivisorSigma[1, #] - #, Divisors[#][[-2]]} &] (* _Michael De Vlieger_, Jun 22 2019 *) %o A326064 (PARI) %o A326064 A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1])); %o A326064 A060681(n) = (n-A032742(n)); %o A326064 A318505(n) = if(1==n,0,(sigma(n)-A032742(n))-n); %o A326064 isA326064(n) = if((n%2)&&(2!=isprimepower(n)), my(s=A032742(n), t=sigma(n)-s); (gcd(t-n, n-A032742(n)) == t-n), 0); %Y A326064 Subsequence of A326063. %Y A326064 Cf. A032742, A060681, A246282, A318505. %Y A326064 Cf. also A228058, A325981, A326131, A326141. %K A326064 nonn %O A326064 1,1 %A A326064 _Antti Karttunen_, Jun 06 2019 %E A326064 More terms from _Amiram Eldar_, Dec 24 2020