This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326076 #13 Aug 30 2019 21:46:51 %S A326076 1,2,4,8,12,24,44,88,152,232,444,888,1576,3152,6136,11480,17112,34224, %T A326076 63504,127008,232352,442208,876944,1753888,3138848,4895328,9739152, %U A326076 18141840,34044720,68089440,123846624,247693248,469397440,924014144,1845676384,3469128224,5182711584 %N A326076 Number of subsets of {1..n} containing all of their integer products <= n. %C A326076 The strict case is A326081. %F A326076 a(n) = 2*A326114(n) for n > 0. - _Andrew Howroyd_, Aug 30 2019 %e A326076 The a(0) = 1 through a(4) = 12 sets: %e A326076 {} {} {} {} {} %e A326076 {1} {1} {1} {1} %e A326076 {2} {2} {3} %e A326076 {1,2} {3} {4} %e A326076 {1,2} {1,3} %e A326076 {1,3} {1,4} %e A326076 {2,3} {2,4} %e A326076 {1,2,3} {3,4} %e A326076 {1,2,4} %e A326076 {1,3,4} %e A326076 {2,3,4} %e A326076 {1,2,3,4} %e A326076 The a(6) = 44 sets: %e A326076 {} {1} {1,3} {1,2,4} {1,2,4,5} {1,2,3,4,6} {1,2,3,4,5,6} %e A326076 {3} {1,4} {1,3,4} {1,2,4,6} {1,2,4,5,6} %e A326076 {4} {1,5} {1,3,5} {1,3,4,5} {1,3,4,5,6} %e A326076 {5} {1,6} {1,3,6} {1,3,4,6} {2,3,4,5,6} %e A326076 {6} {2,4} {1,4,5} {1,3,5,6} %e A326076 {3,4} {1,4,6} {1,4,5,6} %e A326076 {3,5} {1,5,6} {2,3,4,6} %e A326076 {3,6} {2,4,5} {2,4,5,6} %e A326076 {4,5} {2,4,6} {3,4,5,6} %e A326076 {4,6} {3,4,5} %e A326076 {5,6} {3,4,6} %e A326076 {3,5,6} %e A326076 {4,5,6} %t A326076 Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Select[Times@@@Tuples[#,2],#<=n&]]&]],{n,0,10}] %o A326076 (PARI) %o A326076 a(n)={ %o A326076 my(lim=vector(n, k, sqrtint(k))); %o A326076 my(accept(b, k)=for(i=2, lim[k], if(k%i ==0 && bittest(b, i) && bittest(b, k/i), return(0))); 1); %o A326076 my(recurse(k, b)= %o A326076 my(m=1); %o A326076 for(j=max(2*k, n\2+1), min(2*k+1, n), if(accept(b, j), m*=2)); %o A326076 k++; %o A326076 m*if(k > n\2, 1, self()(k, b + (1<<k)) + if(accept(b, k), self()(k, b))) %o A326076 ); %o A326076 recurse(0, 0); %o A326076 } \\ _Andrew Howroyd_, Aug 30 2019 %Y A326076 Cf. A007865, A051026, A103580, A196724, A326020, A326023, A326078, A326079, A326081. %K A326076 nonn %O A326076 0,2 %A A326076 _Gus Wiseman_, Jun 05 2019 %E A326076 a(16)-a(30) from _Andrew Howroyd_, Aug 16 2019 %E A326076 Terms a(31) and beyond from _Andrew Howroyd_, Aug 30 2019