This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326078 #11 Aug 30 2019 21:47:06 %S A326078 1,1,2,4,8,16,24,48,72,144,216,432,552,1104,1656,2592,3936,7872,10056, %T A326078 20112,26688,42320,63480,126960,154800,309600,464400,737568,992160, %U A326078 1984320,2450880,4901760,6292800,10197312,15295968,26241696,32947488,65894976,98842464,161587872,205842528 %N A326078 Number of subsets of {2..n} containing all of their integer quotients > 1. %C A326078 These sets are closed under taking the quotient of two distinct divisible terms. %F A326078 For n > 0, a(n) = A326023(n) - 1. %F A326078 For n > 0, a(n) = A326079(n)/2. %e A326078 The a(6) = 24 subsets: %e A326078 {} {2} {2,3} {2,3,4} {2,3,4,5} {2,3,4,5,6} %e A326078 {3} {2,4} {2,3,5} {2,3,4,6} %e A326078 {4} {2,5} {2,3,6} {2,3,5,6} %e A326078 {5} {3,4} {2,4,5} %e A326078 {6} {3,5} {3,4,5} %e A326078 {4,5} {4,5,6} %e A326078 {4,6} %e A326078 {5,6} %t A326078 Table[Length[Select[Subsets[Range[2,n]],SubsetQ[#,Divide@@@Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]]&]],{n,0,10}] %o A326078 (PARI) %o A326078 a(n)={ %o A326078 my(lim=vector(n, k, sqrtint(k))); %o A326078 my(accept(b, k)=for(i=2, lim[k], if(k%i ==0 && bittest(b,i) != bittest(b,k/i), return(0))); 1); %o A326078 my(recurse(k, b)= %o A326078 my(m=1); %o A326078 for(j=max(2*k,n\2+1), min(2*k+1,n), if(accept(b,j), m*=2)); %o A326078 k++; %o A326078 m*if(k > n\2, 1, (self()(k, b) + if(accept(b, k), self()(k, b + (1<<k))))) %o A326078 ); %o A326078 recurse(1, 0); %o A326078 } \\ _Andrew Howroyd_, Aug 30 2019 %Y A326078 Cf. A007865, A051026, A054519, A067992, A103580, A325860, A325994, A326023, A326076, A326079, A326081. %K A326078 nonn %O A326078 0,3 %A A326078 _Gus Wiseman_, Jun 05 2019 %E A326078 Terms a(21) and beyond from _Andrew Howroyd_, Aug 30 2019