This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326080 #13 Aug 30 2019 21:47:48 %S A326080 1,2,4,7,12,19,31,47,73,110,168,247,375,546,817,1193,1769,2552,3791, %T A326080 5445,8012,11517,16899,24144,35391,50427,73614,104984,152656,216802, %U A326080 315689,447473,648813,920163,1332991,1884735,2728020,3853437,5568644,7868096,11347437 %N A326080 Number of subsets of {1..n} containing the sum of every subset whose sum is <= n. %C A326080 Equivalently, a(n) is the number of subsets of {1..n} containing the sum of any two distinct elements whose sum is <= n. %C A326080 The summands must be distinct. The case where they are allowed to be equal is A326083. %C A326080 If A151897 counts sum-free sets, this sequence counts sum-closed sets. This is different from sum-full sets (A093971). %e A326080 The a(0) = 1 through a(5) = 19 subsets: %e A326080 {} {} {} {} {} {} %e A326080 {1} {1} {1} {1} {1} %e A326080 {2} {2} {2} {2} %e A326080 {1,2} {3} {3} {3} %e A326080 {1,3} {4} {4} %e A326080 {2,3} {1,4} {5} %e A326080 {1,2,3} {2,3} {1,5} %e A326080 {2,4} {2,4} %e A326080 {3,4} {2,5} %e A326080 {1,3,4} {3,4} %e A326080 {2,3,4} {3,5} %e A326080 {1,2,3,4} {4,5} %e A326080 {1,4,5} %e A326080 {2,3,5} %e A326080 {2,4,5} %e A326080 {3,4,5} %e A326080 {1,3,4,5} %e A326080 {2,3,4,5} %e A326080 {1,2,3,4,5} %e A326080 The a(6) = 31 subsets: %e A326080 {} {1} {1,6} {1,5,6} {1,4,5,6} {1,3,4,5,6} {1,2,3,4,5,6} %e A326080 {2} {2,5} {2,3,5} {2,3,5,6} {2,3,4,5,6} %e A326080 {3} {2,6} {2,4,6} {2,4,5,6} %e A326080 {4} {3,4} {2,5,6} {3,4,5,6} %e A326080 {5} {3,5} {3,4,5} %e A326080 {6} {3,6} {3,4,6} %e A326080 {4,5} {3,5,6} %e A326080 {4,6} {4,5,6} %e A326080 {5,6} %t A326080 Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Select[Plus@@@Subsets[#,{2}],#<=n&]]&]],{n,0,10}] %o A326080 (PARI) %o A326080 a(n)={ %o A326080 my(recurse(k, b)= %o A326080 if( k > n, 1, %o A326080 my(t=self()(k + 1, b + (1<<k))); %o A326080 for(i=1, (k-1)\2, if(bittest(b, i) && bittest(b, k-i), return(t))); %o A326080 t + self()(k + 1, b) ) %o A326080 ); %o A326080 recurse(1, 0); %o A326080 } \\ _Andrew Howroyd_, Aug 30 2019 %Y A326080 Cf. A007865, A050291, A051026, A054519, A085489, A093971, A103580, A120641, A151897, A326020, A326023, A326076, A326083. %K A326080 nonn %O A326080 0,2 %A A326080 _Gus Wiseman_, Jun 05 2019 %E A326080 Terms a(21) and beyond from _Andrew Howroyd_, Aug 30 2019