cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326081 Number of subsets of {1..n} containing the product of any set of distinct elements whose product is <= n.

This page as a plain text file.
%I A326081 #11 Aug 25 2019 19:44:25
%S A326081 1,2,4,8,16,32,56,112,200,400,728,1456,2368,4736,8896,16112,30016,
%T A326081 60032,105472,210944,366848,679680,1327232,2654464,4434176,8868352,
%U A326081 17488640,33118336,60069248,120138496,206804224,413608448,759882880,1461600128,2909298496,5319739328
%N A326081 Number of subsets of {1..n} containing the product of any set of distinct elements whose product is <= n.
%C A326081 For n > 0, this sequence divided by 2 first differs from A326116 at a(12)/2 = 1184, A326116(12) = 1232.
%C A326081 If A326117 counts product-free sets, this sequence counts product-closed sets.
%C A326081 The non-strict case is A326076.
%F A326081 For n > 0, a(n) = 2 * A308542(n).
%e A326081 The a(6) = 56 subsets:
%e A326081   {}  {1}  {1,2}  {1,2,4}  {1,2,3,6}  {1,2,3,4,6}  {1,2,3,4,5,6}
%e A326081       {2}  {1,3}  {1,2,5}  {1,2,4,5}  {1,2,3,5,6}
%e A326081       {3}  {1,4}  {1,2,6}  {1,2,4,6}  {1,2,4,5,6}
%e A326081       {4}  {1,5}  {1,3,4}  {1,2,5,6}  {1,3,4,5,6}
%e A326081       {5}  {1,6}  {1,3,5}  {1,3,4,5}  {2,3,4,5,6}
%e A326081       {6}  {2,4}  {1,3,6}  {1,3,4,6}
%e A326081            {2,5}  {1,4,5}  {1,3,5,6}
%e A326081            {2,6}  {1,4,6}  {1,4,5,6}
%e A326081            {3,4}  {1,5,6}  {2,3,4,6}
%e A326081            {3,5}  {2,3,6}  {2,3,5,6}
%e A326081            {3,6}  {2,4,5}  {2,4,5,6}
%e A326081            {4,5}  {2,4,6}  {3,4,5,6}
%e A326081            {4,6}  {2,5,6}
%e A326081            {5,6}  {3,4,5}
%e A326081                   {3,4,6}
%e A326081                   {3,5,6}
%e A326081                   {4,5,6}
%t A326081 Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Select[Times@@@Subsets[#,{2}],#<=n&]]&]],{n,0,10}]
%Y A326081 Cf. A007865, A051026, A103580, A196724, A308542, A326020, A326023, A326076, A326078, A326079.
%K A326081 nonn
%O A326081 0,2
%A A326081 _Gus Wiseman_, Jun 05 2019
%E A326081 Terms a(21) and beyond from _Andrew Howroyd_, Aug 24 2019