This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326090 #15 Jul 13 2019 11:56:55 %S A326090 1,2,6,35,308,3637,55150,1033027,23260536,617066297,18968614874, %T A326090 666664879663,26496140541700,1179815542970053,58388906382906390, %U A326090 3189604848766578563,191168734534622234480,12504288586619417431921,888401197086798248554546,68270033412187747029025111,5652853046029263008213465916,502601914954325406783531231677,47834047958592244085651443711406 %N A326090 E.g.f.: Sum_{n>=0} (1 + exp(n*x))^n * x^n/n!. %C A326090 More generally, the following sums are equal: %C A326090 (1) Sum_{n>=0} (p + q^n)^n * r^n/n!, %C A326090 (2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!; %C A326090 here, q = exp(x) with p = 1, r = x. %H A326090 Paul D. Hanna, <a href="/A326090/b326090.txt">Table of n, a(n) for n = 0..300</a> %F A326090 E.g.f.: Sum_{n>=0} (1 + exp(n*x))^n * x^n/n!. %F A326090 E.g.f.: Sum_{n>=0} exp(n^2*x) * exp( exp(n*x)*x ) * x^n/n!. %e A326090 E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 35*x^3/3! + 308*x^4/4! + 3637*x^5/5! + 55150*x^6/6! + 1033027*x^7/7! + 23260536*x^8/8! + 617066297*x^9/9! + 18968614874*x^10/10! + ... %e A326090 such that %e A326090 A(x) = 1 + (1 + exp(x))*x + (1 + exp(2*x))^2*x^2/2! + (1 + exp(3*x))^3*x^3/3! + (1 + exp(4*x))^4*x^4/4! + (1 + exp(5*x))^5*x^5/5! + (1 + exp(6*x))^6*x^6/6! + ... %e A326090 also %e A326090 A(x) = exp(x) + exp(x + exp(x)*x)*x + exp(4*x + exp(2*x)*x)*x^2/2! + exp(9*x + exp(3*x)*x)*x^3/3! + exp(16*x + exp(4*x)*x)*x^4/4! + exp(25*x + exp(5*x)*x)*x^5/5! + exp(36*x + exp(6*x)*x)*x^6/6! + ... %e A326090 RELATED SERIES. %e A326090 Below we illustrate the following identity at specific values of x: %e A326090 Sum_{n>=0} (1 + exp(n*x))^n * x^n/n! = Sum_{n>=0} exp(n^2*x) * exp( exp(n*x)*x ) * x^n/n!. %e A326090 (1) At x = -1, the following sums are equal %e A326090 S1 = Sum_{n>=0} (1 + exp(-n))^n * (-1)^n/n!, %e A326090 S1 = Sum_{n>=0} exp(-n^2) * exp( -exp(-n) ) * (-1)^n/n!, %e A326090 where S1 = 0.12121214669421724219987424741512642137552627624687959194... %e A326090 (2) At x = -log(2), the following sums are equal %e A326090 S2 = Sum_{n>=0} (1 + 1/2^n)^n * log(1/2)^n/n!, %e A326090 S2 = Sum_{n>=0} 2^(-n^2) * 2^(-1/2^n) * log(1/2)^n/n!, %e A326090 where S2 = 0.26746154600304489791062659014323146833150028333177021587... %o A326090 (PARI) /* E.g.f.: Sum_{n>=0} (1 + exp(n*x))^n * x^n/n! */ %o A326090 {a(n) = my(A = sum(m=0, n, (1 + exp(m*x +x*O(x^n)))^m * x^m/m! )); n!*polcoeff(A, n)} %o A326090 for(n=0, 25, print1(a(n), ", ")) %o A326090 (PARI) /* E.g.f.: Sum_{n>=0} exp( n^2*x + exp(n*x)*x ) * x^n/n! */ %o A326090 {a(n) = my(A = sum(m=0, n, exp(m^2*x + exp(m*x +x*O(x^n))*x ) * x^m/m! )); n!*polcoeff(A, n)} %o A326090 for(n=0, 25, print1(a(n), ", ")) %Y A326090 Cf. A108459, A326091, A326261, A326009. %K A326090 nonn %O A326090 0,2 %A A326090 _Paul D. Hanna_, Jun 28 2019