A326101 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
8, 108, 929, 8628, 81088, 760989, 7140349, 67004116, 628759699, 5900226292, 55367209521, 519561060022, 4875515579106, 45751412134945, 429327253573823, 4028769432048059, 37805620308254748, 354764637439887326
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..1..1. .0..1..0..1. .0..1..0..1. .0..1..0..0. .0..1..1..1 ..1..0..1..0. .0..1..1..1. .0..1..1..0. .0..0..1..0. .0..0..1..0 ..0..1..0..0. .0..0..0..1. .1..0..1..0. .1..0..1..1. .1..1..0..1 ..0..1..1..1. .0..1..1..1. .1..0..1..1. .0..0..0..1. .1..0..1..0 ..1..0..0..0. .0..0..0..0. .0..0..0..0. .1..1..1..1. .0..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A326105.
Formula
Empirical: a(n) = 9*a(n-1) +6*a(n-2) -25*a(n-3) +20*a(n-4) +45*a(n-5) -90*a(n-6) -223*a(n-7) -120*a(n-8) -31*a(n-9) +380*a(n-10) +330*a(n-11) -63*a(n-12) +1212*a(n-13) +225*a(n-14) +584*a(n-15) +203*a(n-16) +317*a(n-17) +57*a(n-18) +86*a(n-19) -5*a(n-20) +4*a(n-21) -4*a(n-22)
Comments