cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326102 Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.

This page as a plain text file.
%I A326102 #4 Jun 06 2019 07:54:02
%S A326102 16,401,5383,81088,1233763,18773244,285501774,4342306378,66044562508,
%T A326102 1004511268426,15278201929483,232375115724566,3534329117779729,
%U A326102 53755680560634333,817601615564449061,12435381613691660830
%N A326102 Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
%C A326102 Column 5 of A326105.
%H A326102 R. H. Hardin, <a href="/A326102/b326102.txt">Table of n, a(n) for n = 1..210</a>
%F A326102 Empirical: a(n) = 17*a(n-1) -25*a(n-2) -81*a(n-3) +812*a(n-4) -1312*a(n-5) -2865*a(n-6) +8714*a(n-7) -66*a(n-8) -43033*a(n-9) -125505*a(n-10) +484471*a(n-11) -255789*a(n-12) -1486727*a(n-13) +3227987*a(n-14) -2598295*a(n-15) -5412191*a(n-16) -47680568*a(n-17) +79979948*a(n-18) +86671801*a(n-19) -262784969*a(n-20) +154305396*a(n-21) -466723959*a(n-22) +959658755*a(n-23) -507585219*a(n-24) +701844263*a(n-25) -889593201*a(n-26) +1536321229*a(n-27) +420363180*a(n-28) +210081684*a(n-29) +253587140*a(n-30) -170890206*a(n-31) +868138535*a(n-32) -51102373*a(n-33) -290450507*a(n-34) -269814180*a(n-35) -497784439*a(n-36) +681316694*a(n-37) -486030089*a(n-38) -192346791*a(n-39) +276312944*a(n-40) -120006865*a(n-41) +66180671*a(n-42) +10458443*a(n-43) -18480207*a(n-44) +38629305*a(n-45) -20808715*a(n-46) -2771235*a(n-47) +11529381*a(n-48) -9539660*a(n-49) +3061661*a(n-50) -307556*a(n-51) -440685*a(n-52) +503602*a(n-53) -278717*a(n-54) +105571*a(n-55) -32382*a(n-56) +9813*a(n-57) -1664*a(n-58) +44*a(n-59) for n>60
%e A326102 Some solutions for n=5
%e A326102 ..0..0..0..0..1. .0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..1
%e A326102 ..1..1..0..1..1. .1..1..1..0..1. .0..1..1..1..1. .1..1..0..1..0
%e A326102 ..0..0..1..0..1. .0..0..0..1..0. .0..0..1..0..1. .0..0..1..1..1
%e A326102 ..1..0..0..0..1. .0..1..0..0..1. .1..0..1..0..0. .1..0..0..0..0
%e A326102 ..1..1..1..0..1. .0..1..1..0..1. .0..1..1..1..0. .0..1..0..1..0
%Y A326102 Cf. A326105.
%K A326102 nonn
%O A326102 1,1
%A A326102 _R. H. Hardin_, Jun 06 2019