This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326102 #4 Jun 06 2019 07:54:02 %S A326102 16,401,5383,81088,1233763,18773244,285501774,4342306378,66044562508, %T A326102 1004511268426,15278201929483,232375115724566,3534329117779729, %U A326102 53755680560634333,817601615564449061,12435381613691660830 %N A326102 Number of nX5 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero. %C A326102 Column 5 of A326105. %H A326102 R. H. Hardin, <a href="/A326102/b326102.txt">Table of n, a(n) for n = 1..210</a> %F A326102 Empirical: a(n) = 17*a(n-1) -25*a(n-2) -81*a(n-3) +812*a(n-4) -1312*a(n-5) -2865*a(n-6) +8714*a(n-7) -66*a(n-8) -43033*a(n-9) -125505*a(n-10) +484471*a(n-11) -255789*a(n-12) -1486727*a(n-13) +3227987*a(n-14) -2598295*a(n-15) -5412191*a(n-16) -47680568*a(n-17) +79979948*a(n-18) +86671801*a(n-19) -262784969*a(n-20) +154305396*a(n-21) -466723959*a(n-22) +959658755*a(n-23) -507585219*a(n-24) +701844263*a(n-25) -889593201*a(n-26) +1536321229*a(n-27) +420363180*a(n-28) +210081684*a(n-29) +253587140*a(n-30) -170890206*a(n-31) +868138535*a(n-32) -51102373*a(n-33) -290450507*a(n-34) -269814180*a(n-35) -497784439*a(n-36) +681316694*a(n-37) -486030089*a(n-38) -192346791*a(n-39) +276312944*a(n-40) -120006865*a(n-41) +66180671*a(n-42) +10458443*a(n-43) -18480207*a(n-44) +38629305*a(n-45) -20808715*a(n-46) -2771235*a(n-47) +11529381*a(n-48) -9539660*a(n-49) +3061661*a(n-50) -307556*a(n-51) -440685*a(n-52) +503602*a(n-53) -278717*a(n-54) +105571*a(n-55) -32382*a(n-56) +9813*a(n-57) -1664*a(n-58) +44*a(n-59) for n>60 %e A326102 Some solutions for n=5 %e A326102 ..0..0..0..0..1. .0..0..0..0..1. .0..0..0..0..0. .0..0..0..0..1 %e A326102 ..1..1..0..1..1. .1..1..1..0..1. .0..1..1..1..1. .1..1..0..1..0 %e A326102 ..0..0..1..0..1. .0..0..0..1..0. .0..0..1..0..1. .0..0..1..1..1 %e A326102 ..1..0..0..0..1. .0..1..0..0..1. .1..0..1..0..0. .1..0..0..0..0 %e A326102 ..1..1..1..0..1. .0..1..1..0..1. .0..1..1..1..0. .0..1..0..1..0 %Y A326102 Cf. A326105. %K A326102 nonn %O A326102 1,1 %A A326102 _R. H. Hardin_, Jun 06 2019