This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326114 #16 Aug 31 2019 05:03:05 %S A326114 1,1,2,4,6,12,22,44,76,116,222,444,788,1576,3068,5740,8556,17112, %T A326114 31752,63504,116176,221104,438472,876944,1569424,2447664,4869576, %U A326114 9070920,17022360,34044720,61923312,123846624,234698720,462007072,922838192,1734564112,2591355792,5182711584 %N A326114 Number of subsets of {2..n} containing no product of two or more (not necessarily distinct) elements. %C A326114 The strict case is A326117. %C A326114 Also the number of subsets of {2..n} containing all of their integer products <= n. For example, the a(1) = 1 through a(5) = 12 subsets are: %C A326114 {} {} {} {} {} {} %C A326114 {2} {2} {3} {3} %C A326114 {3} {4} {4} %C A326114 {2,3} {2,4} {5} %C A326114 {3,4} {2,4} %C A326114 {2,3,4} {3,4} %C A326114 {3,5} %C A326114 {4,5} %C A326114 {2,3,4} %C A326114 {2,4,5} %C A326114 {3,4,5} %C A326114 {2,3,4,5} %F A326114 a(n > 0) = A326076(n)/2. %e A326114 The a(1) = 1 through a(5) = 12 subsets: %e A326114 {} {} {} {} {} %e A326114 {2} {2} {2} {2} %e A326114 {3} {3} {3} %e A326114 {2,3} {4} {4} %e A326114 {2,3} {5} %e A326114 {3,4} {2,3} %e A326114 {2,5} %e A326114 {3,4} %e A326114 {3,5} %e A326114 {4,5} %e A326114 {2,3,5} %e A326114 {3,4,5} %Y A326114 Cf. A007865, A051026, A103580, A196724, A326020, A326023, A326076, A326078, A326079, A326081, A326116, A326117. %K A326114 nonn %O A326114 0,3 %A A326114 _Gus Wiseman_, Jun 06 2019 %E A326114 Terms a(21) and beyond from _Andrew Howroyd_, Aug 30 2019