cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326114 Number of subsets of {2..n} containing no product of two or more (not necessarily distinct) elements.

This page as a plain text file.
%I A326114 #16 Aug 31 2019 05:03:05
%S A326114 1,1,2,4,6,12,22,44,76,116,222,444,788,1576,3068,5740,8556,17112,
%T A326114 31752,63504,116176,221104,438472,876944,1569424,2447664,4869576,
%U A326114 9070920,17022360,34044720,61923312,123846624,234698720,462007072,922838192,1734564112,2591355792,5182711584
%N A326114 Number of subsets of {2..n} containing no product of two or more (not necessarily distinct) elements.
%C A326114 The strict case is A326117.
%C A326114 Also the number of subsets of {2..n} containing all of their integer products <= n. For example, the a(1) = 1 through a(5) = 12 subsets are:
%C A326114   {}  {}  {}   {}     {}       {}
%C A326114           {2}  {2}    {3}      {3}
%C A326114                {3}    {4}      {4}
%C A326114                {2,3}  {2,4}    {5}
%C A326114                       {3,4}    {2,4}
%C A326114                       {2,3,4}  {3,4}
%C A326114                                {3,5}
%C A326114                                {4,5}
%C A326114                                {2,3,4}
%C A326114                                {2,4,5}
%C A326114                                {3,4,5}
%C A326114                                {2,3,4,5}
%F A326114 a(n > 0) = A326076(n)/2.
%e A326114 The a(1) = 1 through a(5) = 12 subsets:
%e A326114   {}  {}   {}     {}     {}
%e A326114       {2}  {2}    {2}    {2}
%e A326114            {3}    {3}    {3}
%e A326114            {2,3}  {4}    {4}
%e A326114                   {2,3}  {5}
%e A326114                   {3,4}  {2,3}
%e A326114                          {2,5}
%e A326114                          {3,4}
%e A326114                          {3,5}
%e A326114                          {4,5}
%e A326114                          {2,3,5}
%e A326114                          {3,4,5}
%Y A326114 Cf. A007865, A051026, A103580, A196724, A326020, A326023, A326076, A326078, A326079, A326081, A326116, A326117.
%K A326114 nonn
%O A326114 0,3
%A A326114 _Gus Wiseman_, Jun 06 2019
%E A326114 Terms a(21) and beyond from _Andrew Howroyd_, Aug 30 2019