This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326116 #19 May 10 2025 14:42:41 %S A326116 1,2,4,8,16,28,56,100,200,364,728,1232,2464,4592,8296,15920,31840, %T A326116 55952,111904,195712,362336,697360,1394720,2334112,4668224,9095392, %U A326116 17225312,31242784,62485568,106668608,213337216,392606528,755131840,1491146912,2727555424,4947175712 %N A326116 Number of subsets of {2..n} containing no products of two or more distinct elements. %C A326116 First differs from A308542 at a(12) = 1232, A308542(12) = 1184. %C A326116 If this sequence counts product-free sets, A308542 counts product-closed sets. %H A326116 Fausto A. C. Cariboni, <a href="/A326116/b326116.txt">Table of n, a(n) for n = 1..47</a> %H A326116 P. J. Cameron and P. Erdős, <a href="https://www.researchgate.net/publication/247043302_On_the_number_of_sets_of_integers_with_various_properties">On the number of integers with various properties</a>, in R. A. Mullin, ed., Number Theory: Proc. First Conf. of Canad. Number Theory Assoc. Conf., Banff, De Gruyter, Berlin, 1990, pp. 61-79. %F A326116 For n > 0, a(n) = A326117(n) - 1. %e A326116 The a(6) = 28 subsets: %e A326116 {} {2} {2,3} {2,3,4} {2,3,4,5} %e A326116 {3} {2,4} {2,3,5} {2,4,5,6} %e A326116 {4} {2,5} {2,4,5} {3,4,5,6} %e A326116 {5} {2,6} {2,4,6} %e A326116 {6} {3,4} {2,5,6} %e A326116 {3,5} {3,4,5} %e A326116 {3,6} {3,4,6} %e A326116 {4,5} {3,5,6} %e A326116 {4,6} {4,5,6} %e A326116 {5,6} %t A326116 Table[Length[Select[Subsets[Range[2,n]],Intersection[#,Select[Times@@@Subsets[#,{2}],#<=n&]]=={}&]],{n,10}] %o A326116 (PARI) %o A326116 a(n)={ %o A326116 my(recurse(k, ep)= %o A326116 if(k > n, 1, %o A326116 my(t = self()(k + 1, ep)); %o A326116 if(!bittest(ep,k), %o A326116 forstep(i=n\k, 1, -1, if(bittest(ep,i), ep=bitor(ep,1<<(k*i)))); %o A326116 t += self()(k + 1, ep); %o A326116 ); %o A326116 t); %o A326116 ); %o A326116 recurse(2, 2); %o A326116 } \\ _Andrew Howroyd_, Aug 25 2019 %Y A326116 Cf. A007865, A051026, A103580, A196724, A326020, A326023, A326076, A326078, A326079, A326081, A326117, A308542. %K A326116 nonn %O A326116 1,2 %A A326116 _Gus Wiseman_, Jun 06 2019 %E A326116 Terms a(21)-a(36) from _Andrew Howroyd_, Aug 25 2019