This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326118 #68 Apr 23 2023 07:27:23 %S A326118 0,1,2,5,6,9,14,21,24,29,36,45,50,57,66,77,84,93,104,117,126,137,150, %T A326118 165,176,189,204,221,234,249,266,285,300,317,336,357,374,393,414,437, %U A326118 456,477,500,525,546,569,594,621,644,669,696,725,750,777,806,837,864,893 %N A326118 a(n) is the largest number of squares of unit area connected only at corners and without holes that can be inscribed in an n X n square. %C A326118 a(n) is equal to h_4(n) as defined in A309038. %C A326118 a(n) is the maximum size of an induced subtree in the graph of the black squares of an n X n checkerboard, where edges connect diagonally adjacent squares. - _Andrew Howroyd_, Sep 10 2019 %H A326118 Stefano Spezia, <a href="/A326118/b326118.txt">Table of n, a(n) for n = 0..10000</a> %H A326118 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,1,-2,1). %F A326118 O.g.f.: x*(1 + 2*x^2 - 2*x^3 + x^4 + 2*x^5 - 2*x^7)/((1 - x)^3*(1 + x)*(1 + x^2)). %F A326118 E.g.f.: -3*exp(-x)/8 + (2 + x)^2 + exp(x)/8*(-29 + 2*x*(7 + x)) - 3*sin(x)/2. %F A326118 a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n > 8. %F A326118 a(n) = (1/8)*(-29 + 12*n + 2*n^2 - 3*(-1)^n - 12*sin(n*Pi/2)) for n > 2, a(0) = 0, a(1) = 1, a(2) = 2. %F A326118 Limit_{n->oo} a(n)/A000290(n) = 1/4. %e A326118 Illustrations for n = 1..7: %e A326118 __ __ __ __ %e A326118 |__| |__|__ |__|__|__| %e A326118 |__| __|__|__ %e A326118 |__| |__| %e A326118 a(1) = 1 a(2) = 2 a(3) = 5 %e A326118 __ __ __ __ %e A326118 |__|__|__| |__|__|__| %e A326118 __|__|__ __|__|__ __ %e A326118 |__| |__|__ |__| |__|__|__| %e A326118 |__| __|__|__ %e A326118 |__| |__| %e A326118 a(4) = 6 a(5) = 9 %e A326118 __ __ __ __ __ __ __ %e A326118 |__|__|__| |__|__ |__|__|__| |__|__|__| %e A326118 __|__|__ __|__| __|__|__ __|__|__ %e A326118 |__| |__|__|__| |__| |__|__|__| |__| %e A326118 __ __|__|__ __ __|__|__ __ %e A326118 |__|__|__| |__|__ |__|__|__| |__|__|__| %e A326118 |__| |__| __|__|__ __|__|__ %e A326118 |__| |__| |__| |__| %e A326118 a(6) = 14 a(7) = 21 %t A326118 Join[{0,1,2},Table[(1/8)*(-29+12*n+2*n^2-3(-1)^n-12*Sin[n*Pi/2]),{n,3,57}]] %o A326118 (Magma) I:=[0, 1, 2, 5, 6, 9, 14, 21, 24]; [n le 9 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-4)-2*Self(n-5)+Self(n-6): n in [1..58]]; %o A326118 (PARI) concat([0], Vec(x*(-1-2*x^2+2*x^3-x^4-2*x^5+2*x^7)/((-1+x)^3*(1+x)*(1+x^2))+O(x^58))) %Y A326118 Cf. A000290, A309038, A338329 (1st differences). %K A326118 nonn,easy %O A326118 0,3 %A A326118 _Stefano Spezia_, Sep 10 2019