cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326118 a(n) is the largest number of squares of unit area connected only at corners and without holes that can be inscribed in an n X n square.

This page as a plain text file.
%I A326118 #68 Apr 23 2023 07:27:23
%S A326118 0,1,2,5,6,9,14,21,24,29,36,45,50,57,66,77,84,93,104,117,126,137,150,
%T A326118 165,176,189,204,221,234,249,266,285,300,317,336,357,374,393,414,437,
%U A326118 456,477,500,525,546,569,594,621,644,669,696,725,750,777,806,837,864,893
%N A326118 a(n) is the largest number of squares of unit area connected only at corners and without holes that can be inscribed in an n X n square.
%C A326118 a(n) is equal to h_4(n) as defined in A309038.
%C A326118 a(n) is the maximum size of an induced subtree in the graph of the black squares of an n X n checkerboard, where edges connect diagonally adjacent squares. - _Andrew Howroyd_, Sep 10 2019
%H A326118 Stefano Spezia, <a href="/A326118/b326118.txt">Table of n, a(n) for n = 0..10000</a>
%H A326118 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,1,-2,1).
%F A326118 O.g.f.: x*(1 + 2*x^2 - 2*x^3 + x^4 + 2*x^5 - 2*x^7)/((1 - x)^3*(1 + x)*(1 + x^2)).
%F A326118 E.g.f.: -3*exp(-x)/8 + (2 + x)^2 + exp(x)/8*(-29 + 2*x*(7 + x)) - 3*sin(x)/2.
%F A326118 a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n > 8.
%F A326118 a(n) = (1/8)*(-29 + 12*n + 2*n^2 - 3*(-1)^n - 12*sin(n*Pi/2)) for n > 2, a(0) = 0, a(1) = 1, a(2) = 2.
%F A326118 Limit_{n->oo} a(n)/A000290(n) = 1/4.
%e A326118 Illustrations for n = 1..7:
%e A326118      __              __              __    __
%e A326118     |__|            |__|__          |__|__|__|
%e A326118                        |__|          __|__|__
%e A326118                                     |__|  |__|
%e A326118     a(1) = 1        a(2) = 2         a(3) = 5
%e A326118      __    __                  __    __
%e A326118     |__|__|__|                |__|__|__|
%e A326118      __|__|__                  __|__|__    __
%e A326118     |__|  |__|__              |__|  |__|__|__|
%e A326118              |__|                    __|__|__
%e A326118                                     |__|  |__|
%e A326118         a(4) = 6                  a(5) = 9
%e A326118      __    __    __      __    __    __    __
%e A326118     |__|__|__|  |__|__  |__|__|__|  |__|__|__|
%e A326118      __|__|__    __|__|  __|__|__    __|__|__
%e A326118     |__|  |__|__|__|    |__|  |__|__|__|  |__|
%e A326118      __    __|__|__      __    __|__|__    __
%e A326118     |__|__|__|  |__|__  |__|__|__|  |__|__|__|
%e A326118        |__|        |__|  __|__|__    __|__|__
%e A326118                         |__|  |__|  |__|  |__|
%e A326118        a(6) = 14              a(7) = 21
%t A326118 Join[{0,1,2},Table[(1/8)*(-29+12*n+2*n^2-3(-1)^n-12*Sin[n*Pi/2]),{n,3,57}]]
%o A326118 (Magma) I:=[0, 1, 2, 5, 6, 9, 14, 21, 24]; [n le 9 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-4)-2*Self(n-5)+Self(n-6): n in [1..58]];
%o A326118 (PARI) concat([0], Vec(x*(-1-2*x^2+2*x^3-x^4-2*x^5+2*x^7)/((-1+x)^3*(1+x)*(1+x^2))+O(x^58)))
%Y A326118 Cf. A000290, A309038, A338329 (1st differences).
%K A326118 nonn,easy
%O A326118 0,3
%A A326118 _Stefano Spezia_, Sep 10 2019