cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326134 Numbers k such that A326057(k) is equal to A252748(k) and A252748(k) is not 1.

This page as a plain text file.
%I A326134 #43 Dec 22 2024 09:16:45
%S A326134 6,28,69,91,496,2211,4825,8128,12639,22799825,33550336,60406599,
%T A326134 68258725,569173299,794579511,984210266,2830283326,8589869056,
%U A326134 10759889913,80295059913,85871289682
%N A326134 Numbers k such that A326057(k) is equal to A252748(k) and A252748(k) is not 1.
%C A326134 No other terms below 3221225472.
%C A326134 Numbers k such that A252748(k) [= A003961(k) - 2*k] <> 1 (i.e., k is not in A348514), and A286385(k) [= A003961(k) - A000203(k)] = m*A252748(k) for some positive integer m. Note that this entails that k is nonabundant (A000203(k) <= 2*k) and primeshift-abundant (A252748(k) > 2), thus this is a subsequence of A341614. - revised Dec 13 2024
%C A326134 This is a subsequence of A378980, see further comments there. - _Antti Karttunen_, Dec 13 2024
%H A326134 <a href="/index/O#opnseqs">Index entries for sequences where any odd perfect numbers must occur</a>
%H A326134 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A326134 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%e A326134 28 is a term as A252748(28) = 43 > 1 and A286385(28) = 43, which is a multiple of 43.
%e A326134 69 is a term as A252748(69) = 7 > 1 and A286385(69) = 49 is a multiple of 7.
%e A326134 91 is a term as A252748(91) = 5 > 1 and A286385(91) = 75 is a multiple of 5.
%t A326134 Select[Range[10^5], And[#3 - #1 != 1, GCD[#3 - #1, #3 - #2] == #3 - #1] & @@ {2 #, DivisorSigma[1, #], Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &] (* _Michael De Vlieger_, Feb 22 2021 *)
%o A326134 (PARI)
%o A326134 A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
%o A326134 isA326134(n) = { my(s = A003961(n), t = (s-(2*n)), u = s-sigma(n)); ((1!=t)&&!(u%t)&&((u/t)>0)); };
%Y A326134 Cf. A000396 (subsequence), A003961, A252748, A286385, A326057, A337345, A337372, A341611, A348514, A379216, A379217.
%Y A326134 Subsequence of the following sequences: A246282, A341614, A378980.
%Y A326134 Odd terms form a subsequence of A349753.
%K A326134 nonn,more
%O A326134 1,1
%A A326134 _Antti Karttunen_, Jun 11 2019
%E A326134 a(18) from _Antti Karttunen_, Dec 14 2024
%E A326134 a(19)..a(21) from _Antti Karttunen_ (from the b-file of A378980 computed by _Amiram Eldar_), Dec 20 2024