cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326149 Numbers whose product of prime indices is divisible by their sum of prime indices.

This page as a plain text file.
%I A326149 #13 Jan 11 2021 02:50:11
%S A326149 2,3,5,7,9,11,13,17,19,23,29,30,31,37,41,43,47,49,53,59,61,63,65,67,
%T A326149 71,73,79,81,83,84,89,97,101,103,107,108,109,113,125,127,131,137,139,
%U A326149 149,150,151,154,157,163,165,167,169,173,179,181,190,191,193,197
%N A326149 Numbers whose product of prime indices is divisible by their sum of prime indices.
%C A326149 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A326149 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose product of parts is divisible by their sum of parts. The enumeration of these partitions by sum is given by A057568.
%H A326149 Amiram Eldar, <a href="/A326149/b326149.txt">Table of n, a(n) for n = 1..10000</a>
%e A326149 The sequence of terms together with their prime indices begins:
%e A326149     2: {1}
%e A326149     3: {2}
%e A326149     5: {3}
%e A326149     7: {4}
%e A326149     9: {2,2}
%e A326149    11: {5}
%e A326149    13: {6}
%e A326149    17: {7}
%e A326149    19: {8}
%e A326149    23: {9}
%e A326149    29: {10}
%e A326149    30: {1,2,3}
%e A326149    31: {11}
%e A326149    37: {12}
%e A326149    41: {13}
%e A326149    43: {14}
%e A326149    47: {15}
%e A326149    49: {4,4}
%e A326149    53: {16}
%e A326149    59: {17}
%t A326149 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A326149 Select[Range[2,100],Divisible[Times@@primeMS[#],Plus@@primeMS[#]]&]
%Y A326149 Satisfies A056239(a(n))|A003963(a(n)).
%Y A326149 The nonprime case is A326150, with squarefree case A326158.
%Y A326149 Cf. A000720, A001222, A057567, A057568, A112798, A301987.
%Y A326149 Cf. A325037, A325042, A325044, A326151, A326153/A326154, A326155, A326156.
%K A326149 nonn
%O A326149 1,1
%A A326149 _Gus Wiseman_, Jun 09 2019