This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326149 #13 Jan 11 2021 02:50:11 %S A326149 2,3,5,7,9,11,13,17,19,23,29,30,31,37,41,43,47,49,53,59,61,63,65,67, %T A326149 71,73,79,81,83,84,89,97,101,103,107,108,109,113,125,127,131,137,139, %U A326149 149,150,151,154,157,163,165,167,169,173,179,181,190,191,193,197 %N A326149 Numbers whose product of prime indices is divisible by their sum of prime indices. %C A326149 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A326149 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose product of parts is divisible by their sum of parts. The enumeration of these partitions by sum is given by A057568. %H A326149 Amiram Eldar, <a href="/A326149/b326149.txt">Table of n, a(n) for n = 1..10000</a> %e A326149 The sequence of terms together with their prime indices begins: %e A326149 2: {1} %e A326149 3: {2} %e A326149 5: {3} %e A326149 7: {4} %e A326149 9: {2,2} %e A326149 11: {5} %e A326149 13: {6} %e A326149 17: {7} %e A326149 19: {8} %e A326149 23: {9} %e A326149 29: {10} %e A326149 30: {1,2,3} %e A326149 31: {11} %e A326149 37: {12} %e A326149 41: {13} %e A326149 43: {14} %e A326149 47: {15} %e A326149 49: {4,4} %e A326149 53: {16} %e A326149 59: {17} %t A326149 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326149 Select[Range[2,100],Divisible[Times@@primeMS[#],Plus@@primeMS[#]]&] %Y A326149 Satisfies A056239(a(n))|A003963(a(n)). %Y A326149 The nonprime case is A326150, with squarefree case A326158. %Y A326149 Cf. A000720, A001222, A057567, A057568, A112798, A301987. %Y A326149 Cf. A325037, A325042, A325044, A326151, A326153/A326154, A326155, A326156. %K A326149 nonn %O A326149 1,1 %A A326149 _Gus Wiseman_, Jun 09 2019