cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326151 Numbers whose product of prime indices is twice their sum of prime indices.

This page as a plain text file.
%I A326151 #17 Jun 28 2020 10:20:11
%S A326151 49,63,65,81,150,154,190,198,364,468,580,840,952,1080,1224,1480,2128,
%T A326151 2288,2736,3440,5152,5280,6624,8480,9408,10816,12096,12992,15552,
%U A326151 16704,19520,24960,26752,27776,35712,44800,45440,56576,57600,66304,85248,101120,118272
%N A326151 Numbers whose product of prime indices is twice their sum of prime indices.
%C A326151 The only squarefree terms are 65, 154, and 190. See A326157 for a proof.
%C A326151 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A326151 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose product of parts is twice their sum of parts. The enumeration of these partitions by sum is given by A326152.
%H A326151 David A. Corneth, <a href="/A326151/b326151.txt">Table of n, a(n) for n = 1..10000</a> (first 80 terms from Jinyuan Wang)
%e A326151 The sequence of terms together with their prime indices begins:
%e A326151      49: {4,4}
%e A326151      63: {2,2,4}
%e A326151      65: {3,6}
%e A326151      81: {2,2,2,2}
%e A326151     150: {1,2,3,3}
%e A326151     154: {1,4,5}
%e A326151     190: {1,3,8}
%e A326151     198: {1,2,2,5}
%e A326151     364: {1,1,4,6}
%e A326151     468: {1,1,2,2,6}
%e A326151     580: {1,1,3,10}
%e A326151     840: {1,1,1,2,3,4}
%e A326151     952: {1,1,1,4,7}
%e A326151    1080: {1,1,1,2,2,2,3}
%e A326151    1224: {1,1,1,2,2,7}
%e A326151    1480: {1,1,1,3,12}
%e A326151    2128: {1,1,1,1,4,8}
%e A326151    2288: {1,1,1,1,5,6}
%e A326151    2736: {1,1,1,1,2,2,8}
%e A326151    3440: {1,1,1,1,3,14}
%t A326151 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A326151 Select[Range[1000],Times@@primeMS[#]==2*Plus@@primeMS[#]&]
%o A326151 (PARI) is(k) = {my(f=factor(k)); for(i=1, #f~, f[i, 1]=primepi(f[i, 1])); factorback(f)==2*sum(i=1, #f~, f[i, 2]*f[i, 1]); } \\ _Jinyuan Wang_, Jun 27 2020
%Y A326151 Satisfies A003963(a(n)) = 2 * A056239(a(n)).
%Y A326151 Cf. A112798, A301987, A325037, A325038, A325044, A326149, A326152, A326153/A326154, A326156, A326157.
%K A326151 nonn
%O A326151 1,1
%A A326151 _Gus Wiseman_, Jun 09 2019