cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326155 Positive integers whose sum of prime indices is divisible by their product of prime indices.

This page as a plain text file.
%I A326155 #10 Jan 11 2021 02:50:17
%S A326155 1,2,3,4,5,7,8,9,11,12,13,16,17,19,23,29,30,31,32,37,40,41,43,47,48,
%T A326155 53,59,61,64,67,71,73,79,83,84,89,97,101,103,107,108,109,112,113,127,
%U A326155 128,131,137,139,144,149,151,157,163,167,173,179,181,191,192,193
%N A326155 Positive integers whose sum of prime indices is divisible by their product of prime indices.
%C A326155 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A326155 Also Heinz numbers of the integer partitions counted by A057567. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A326155 Amiram Eldar, <a href="/A326155/b326155.txt">Table of n, a(n) for n = 1..10000</a>
%e A326155 The sequence of terms together with their prime indices begins:
%e A326155    1: {}
%e A326155    2: {1}
%e A326155    3: {2}
%e A326155    4: {1,1}
%e A326155    5: {3}
%e A326155    7: {4}
%e A326155    8: {1,1,1}
%e A326155    9: {2,2}
%e A326155   11: {5}
%e A326155   12: {1,1,2}
%e A326155   13: {6}
%e A326155   16: {1,1,1,1}
%e A326155   17: {7}
%e A326155   19: {8}
%e A326155   23: {9}
%e A326155   29: {10}
%e A326155   30: {1,2,3}
%e A326155   31: {11}
%e A326155   32: {1,1,1,1,1}
%e A326155   37: {12}
%t A326155 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A326155 Select[Range[100],Divisible[Plus@@primeMS[#],Times@@primeMS[#]]&]
%Y A326155 One and positions of ones in A326153.
%Y A326155 Cf. A003963, A056239, A057567, A057568, A112798, A301987.
%Y A326155 Cf. A325037, A325042, A325044, A326150, A326151, A326154, A326156, A326158.
%K A326155 nonn
%O A326155 1,2
%A A326155 _Gus Wiseman_, Jun 10 2019