This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326157 #18 Jul 20 2020 10:55:04 %S A326157 65,154,190 %N A326157 Squarefree numbers whose product of prime indices is twice their sum of prime indices. %C A326157 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A326157 This sequence is finite. Proof: k = p_1*p_2*...*p_t is a term iff q_1*q_2*...*q_t = 2*(q_1 + q_2 + ... + q_t), where q_i = pi(p_i) and q_1 < q_2 < ... < q_t. If t = 2, then 1/2 = 1/q_1 + 1/q_2. Thus q_1 <= 3, we have k = prime(3)*prime(6) = 65. If t = 3, then 1/2 = 1/(q_1*q_2) + 1/(q_1*q_3) + 1/(q_2*q_3). Thus q_1*q_2 <= 5, we have k = prime(1)*prime(4)*prime(5) = 154 or k = prime(1)*prime(3)*prime(8) = 190. If t > 3, then 1/2 = Sum_{i=1..t} q_i/(q_1*q_2*...*q_t) < Sum_{i=1..t} i/t! < 1/2, a contradiction. - _Jinyuan Wang_, Jun 27 2020 %F A326157 A003963(a(n)) = 2 * A056239(a(n)). %e A326157 The sequence of terms together with their prime indices starts: %e A326157 65: {3,6} %e A326157 154: {1,4,5} %e A326157 190: {1,3,8} %p A326157 q:= n-> (l-> andmap(i-> i[2]=1, l) and (h-> mul(i, i=h)=2*add(i, %p A326157 i=h))(map(i-> numtheory[pi](i[1]), l)))(ifactors(n)[2]): %p A326157 select(q, [$1..1000])[]; # _Alois P. Heinz_, Sep 12 2019 %t A326157 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326157 Select[Range[10000],SquareFreeQ[#]&&SameQ[Times@@primeMS[#],2*Plus@@primeMS[#]]&] %Y A326157 Intersection of A005117 and A326151. %Y A326157 Product of prime indices is A003963. %Y A326157 Sum of prime indices is A056239. %Y A326157 Cf. A000720, A001222, A069016, A112798, A301987, A325041, A325042, A326152. %K A326157 nonn,bref,fini,full %O A326157 1,1 %A A326157 _Gus Wiseman_, Sep 12 2019