cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326157 Squarefree numbers whose product of prime indices is twice their sum of prime indices.

This page as a plain text file.
%I A326157 #18 Jul 20 2020 10:55:04
%S A326157 65,154,190
%N A326157 Squarefree numbers whose product of prime indices is twice their sum of prime indices.
%C A326157 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A326157 This sequence is finite. Proof: k = p_1*p_2*...*p_t is a term iff q_1*q_2*...*q_t = 2*(q_1 + q_2 + ... + q_t), where q_i = pi(p_i) and q_1 < q_2 < ... < q_t. If t = 2, then 1/2 = 1/q_1 + 1/q_2. Thus q_1 <= 3, we have k = prime(3)*prime(6) = 65. If t = 3, then 1/2 = 1/(q_1*q_2) + 1/(q_1*q_3) + 1/(q_2*q_3). Thus q_1*q_2 <= 5, we have k = prime(1)*prime(4)*prime(5) = 154 or k = prime(1)*prime(3)*prime(8) = 190. If t > 3, then 1/2 = Sum_{i=1..t} q_i/(q_1*q_2*...*q_t) < Sum_{i=1..t} i/t! < 1/2, a contradiction. - _Jinyuan Wang_, Jun 27 2020
%F A326157 A003963(a(n)) = 2 * A056239(a(n)).
%e A326157 The sequence of terms together with their prime indices starts:
%e A326157    65: {3,6}
%e A326157   154: {1,4,5}
%e A326157   190: {1,3,8}
%p A326157 q:= n-> (l-> andmap(i-> i[2]=1, l) and (h-> mul(i, i=h)=2*add(i,
%p A326157         i=h))(map(i-> numtheory[pi](i[1]), l)))(ifactors(n)[2]):
%p A326157 select(q, [$1..1000])[];  # _Alois P. Heinz_, Sep 12 2019
%t A326157 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A326157 Select[Range[10000],SquareFreeQ[#]&&SameQ[Times@@primeMS[#],2*Plus@@primeMS[#]]&]
%Y A326157 Intersection of A005117 and A326151.
%Y A326157 Product of prime indices is A003963.
%Y A326157 Sum of prime indices is A056239.
%Y A326157 Cf. A000720, A001222, A069016, A112798, A301987, A325041, A325042, A326152.
%K A326157 nonn,bref,fini,full
%O A326157 1,1
%A A326157 _Gus Wiseman_, Sep 12 2019