This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326173 #9 Jun 22 2019 19:19:08 %S A326173 1,1,1,2,4,5,8,16,24,44,77,133,240,429,772,1414,2588,4742,8761,16273, %T A326173 30255,56392,105581,198352,373228,703409,1329633,2519927,4781637, %U A326173 9084813,17298255,33001380,63023204,120480659,230702421,442423139,849161669,1631219288,3137595779,6042247855,11644198080,22455871375,43351354727 %N A326173 Number of maximal subsets of {1..n} whose sum is less than or equal to the sum of their complement. %C A326173 Also the number of minimal subsets of {1..n} whose sum is greater than or equal to the sum of their complement. For example, the a(0) = 1 through a(7) = 16 subsets are: %C A326173 {} {1} {2} {3} {1,4} {3,5} {5,6} {1,6,7} %C A326173 {1,2} {2,3} {4,5} {1,4,6} {2,5,7} %C A326173 {2,4} {1,2,5} {2,3,6} {2,6,7} %C A326173 {3,4} {1,3,4} {2,4,5} {3,4,7} %C A326173 {2,3,4} {2,4,6} {3,5,6} %C A326173 {3,4,5} {3,5,7} %C A326173 {3,4,6} {3,6,7} %C A326173 {1,2,3,5} {4,5,6} %C A326173 {4,5,7} %C A326173 {4,6,7} %C A326173 {5,6,7} %C A326173 {1,2,4,7} %C A326173 {1,2,5,6} %C A326173 {1,3,4,6} %C A326173 {2,3,4,5} %C A326173 {2,3,4,6} %e A326173 The a(0) = 1 through a(7) = 16 subsets: %e A326173 {} {} {1} {3} {1,2} {1,5} {4,6} {1,5,7} %e A326173 {1,2} {1,3} {2,5} {1,2,5} {1,6,7} %e A326173 {1,4} {3,4} {1,2,6} {2,5,7} %e A326173 {2,3} {1,2,3} {1,3,5} {3,4,7} %e A326173 {1,2,4} {1,3,6} {3,5,6} %e A326173 {1,4,5} {1,2,3,4} %e A326173 {2,3,5} {1,2,3,5} %e A326173 {1,2,3,4} {1,2,3,6} %e A326173 {1,2,3,7} %e A326173 {1,2,4,5} %e A326173 {1,2,4,6} %e A326173 {1,2,4,7} %e A326173 {1,2,5,6} %e A326173 {1,3,4,5} %e A326173 {1,3,4,6} %e A326173 {2,3,4,5} %t A326173 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; %t A326173 Table[Length[fasmax[Select[Subsets[Range[n]],Plus@@Complement[Range[n],#]>=Plus@@#&]]],{n,0,10}] %Y A326173 The non-maximal case is A059529. %Y A326173 Cf. A053632, A057567, A057568, A063865, A326174, A326175. %K A326173 nonn %O A326173 0,4 %A A326173 _Gus Wiseman_, Jun 11 2019 %E A326173 a(16)-a(42) from _Bert Dobbelaere_, Jun 22 2019