cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326211 Number of unsortable normal multiset partitions of weight n.

Original entry on oeis.org

0, 0, 0, 1, 17, 170, 1455, 11678, 92871, 752473
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers. It is unsortable if no permutation has an ordered concatenation, or equivalently if the concatenation of its lexicographically-ordered parts is not weakly increasing. For example, the multiset partition {{1,2},{1,1,1},{2,2,2}} is sortable because the permutation ((1,1,1),(1,2),(2,2,2)) has concatenation (1,1,1,1,2,2,2,2), which is weakly increasing.

Examples

			The a(3) = 1 and a(4) = 17 multiset partitions:
  {{1,3},{2}}  {{1,1,3},{2}}
               {{1,2},{1,2}}
               {{1,2},{1,3}}
               {{1,2,3},{2}}
               {{1,2,4},{3}}
               {{1,3},{2,2}}
               {{1,3},{2,3}}
               {{1,3},{2,4}}
               {{1,3,3},{2}}
               {{1,3,4},{2}}
               {{1,4},{2,3}}
               {{1},{1,3},{2}}
               {{1},{2,4},{3}}
               {{1,3},{2},{2}}
               {{1,3},{2},{3}}
               {{1,3},{2},{4}}
               {{1,4},{2},{3}}
		

Crossrefs

Unsortable set partitions are A058681.
Sortable normal multiset partitions are A326212.
Non-crossing normal multiset partitions are A324171.
MM-numbers of unsortable multiset partitions are A326258.

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Sort[#,lexsort]&/@Join@@mps/@allnorm[n],!OrderedQ[Join@@#]&]],{n,0,5}]

Formula

A255906(n) = a(n) + A326212(n).