This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326212 #10 May 11 2023 12:21:49 %S A326212 1,1,4,15,59,230,901,3522,13773,53847,210527,823087,3218002,12581319, %T A326212 49188823,192312112,751877137,2939592383,11492839729,44933224559, %U A326212 175674134309,686828104551,2685272063984,10498530869151,41045803846015,160475597429847 %N A326212 Number of sortable normal multiset partitions of weight n. %C A326212 A multiset partition is normal if it covers an initial interval of positive integers. It is sortable if some permutation has an ordered concatenation. For example, the multiset partition {{1,2},{1,1,1},{2,2,2}} is sortable because the permutation ((1,1,1),(1,2),(2,2,2)) has concatenation (1,1,1,1,2,2,2,2), which is weakly increasing. %H A326212 Andrew Howroyd, <a href="/A326212/b326212.txt">Table of n, a(n) for n = 0..1000</a> %F A326212 A255906(n) = a(n) + A326211(n). %F A326212 G.f.: ((1 - x)*(1 - 2*x) - x^2*P(x))/(2*(1 - x)*(1 - 2*x) - (1 - 3*x + 4*x^2)*P(x)) where P(x) is the g.f. of A000041. - _Andrew Howroyd_, May 11 2023 %e A326212 The a(0) = 1 through a(3) = 15 multiset partitions: %e A326212 {} {{1}} {{1,1}} {{1,1,1}} %e A326212 {{1,2}} {{1,1,2}} %e A326212 {{1},{1}} {{1,2,2}} %e A326212 {{1},{2}} {{1,2,3}} %e A326212 {{1},{1,1}} %e A326212 {{1},{1,2}} %e A326212 {{1,1},{2}} %e A326212 {{1},{2,2}} %e A326212 {{1,2},{2}} %e A326212 {{1},{2,3}} %e A326212 {{1,2},{3}} %e A326212 {{1},{1},{1}} %e A326212 {{1},{1},{2}} %e A326212 {{1},{2},{2}} %e A326212 {{1},{2},{3}} %t A326212 lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; %t A326212 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A326212 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A326212 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A326212 Table[Length[Select[Sort[#,lexsort]&/@Join@@mps/@allnorm[n],OrderedQ[Join@@#]&]],{n,0,5}] %o A326212 (PARI) seq(n) = my(p=1/eta(x + O(x*x^n))); Vec(((1 - x)*(1 - 2*x) - x^2*p)/(2*(1 - x)*(1 - 2*x) - (1 - 3*x + 4*x^2)*p)) \\ _Andrew Howroyd_, May 11 2023 %Y A326212 Sortable set partitions are A011782. %Y A326212 Unsortable normal multiset partitions are A326211. %Y A326212 Crossing normal multiset partitions are A326277. %Y A326212 Cf. A000041, A000108, A058681, A255906, A324170, A324171. %Y A326212 Cf. A326209, A326237, A326255, A326256, A326257, A326258. %K A326212 nonn %O A326212 0,3 %A A326212 _Gus Wiseman_, Jun 19 2019 %E A326212 Terms a(10) and beyond from _Andrew Howroyd_, May 11 2023