This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326214 #9 Aug 23 2023 08:36:29 %S A326214 0,0,12,384,53184 %N A326214 Number of labeled n-vertex digraphs (with loops) containing a (directed) Hamiltonian path. %C A326214 A path is Hamiltonian if it passes through every vertex exactly once. %H A326214 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hamiltonian_path">Hamiltonian path</a> %H A326214 Gus Wiseman, <a href="http://arxiv.org/abs/0709.0430">Enumeration of paths and cycles and e-coefficients of incomparability graphs</a>, arXiv:0709.0430 [math.CO], 2007. %F A326214 A002416(n) = a(n) + A326213(n). %e A326214 The a(2) = 12 edge-sets: %e A326214 {12} %e A326214 {21} %e A326214 {11,12} %e A326214 {11,21} %e A326214 {12,21} %e A326214 {12,22} %e A326214 {21,22} %e A326214 {11,12,21} %e A326214 {11,12,22} %e A326214 {11,21,22} %e A326214 {12,21,22} %e A326214 {11,12,21,22} %t A326214 Table[Length[Select[Subsets[Tuples[Range[n],2]],FindHamiltonianPath[Graph[Range[n],DirectedEdge@@@#]]!={}&]],{n,4}] (* Mathematica 10.2+ *) %Y A326214 The unlabeled case is A326221. %Y A326214 The undirected case is A326206. %Y A326214 The case without loops is A326217. %Y A326214 Digraphs not containing a Hamiltonian path are A326213. %Y A326214 Digraphs containing a Hamiltonian cycle are A326204. %Y A326214 Cf. A000595, A002416, A003024, A003216, A057864, A326224, A326225, A326226. %K A326214 nonn,more %O A326214 0,3 %A A326214 _Gus Wiseman_, Jun 15 2019