This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326216 #15 Aug 23 2023 08:35:34 %S A326216 1,1,1,16,772 %N A326216 Number of labeled n-vertex digraphs (without loops) not containing a (directed) Hamiltonian path. %C A326216 A path is Hamiltonian if it passes through every vertex exactly once. %H A326216 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hamiltonian_path">Hamiltonian path</a> %H A326216 Gus Wiseman, <a href="http://arxiv.org/abs/0709.0430">Enumeration of paths and cycles and e-coefficients of incomparability graphs</a>, arXiv:0709.0430 [math.CO], 2007. %F A326216 A053763(n) = a(n) + A326217(n). %e A326216 The a(3) = 16 edge-sets: %e A326216 {} {12} {12,13} %e A326216 {13} {12,21} %e A326216 {21} {12,32} %e A326216 {23} {13,23} %e A326216 {31} {13,31} %e A326216 {32} {21,23} %e A326216 {21,31} %e A326216 {23,32} %e A326216 {31,32} %t A326216 Table[Length[Select[Subsets[Select[Tuples[Range[n],2],UnsameQ@@#&]],FindHamiltonianPath[Graph[Range[n],DirectedEdge@@@#]]=={}&]],{n,4}] (* Mathematica 10.2+ *) %Y A326216 Unlabeled digraphs not containing a Hamiltonian path are A326224. %Y A326216 The undirected case is A326205. %Y A326216 The unlabeled undirected case is A283420. %Y A326216 The case with loops is A326213. %Y A326216 Digraphs (without loops) containing a Hamiltonian path are A326217. %Y A326216 Digraphs (without loops) not containing a Hamiltonian cycle are A326218. %Y A326216 Cf. A000595, A002416, A003024, A003216, A057864, A326206, A326214, A326220, A326221, A326225. %K A326216 nonn,more %O A326216 0,4 %A A326216 _Gus Wiseman_, Jun 15 2019