This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326218 #8 Jun 16 2019 22:33:50 %S A326218 1,0,3,49,2902 %N A326218 Number of non-Hamiltonian labeled n-vertex digraphs (without loops). %C A326218 A digraph is Hamiltonian if it contains a directed cycle passing through every vertex exactly once. %H A326218 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hamiltonian_path">Hamiltonian path</a> %F A326218 A053763(n) = a(n) + A326219(n). %e A326218 The a(3) = 49 edge-sets: %e A326218 {} {12} {12,13} {12,13,21} {12,13,21,23} %e A326218 {13} {12,21} {12,13,23} {12,13,21,31} %e A326218 {21} {12,23} {12,13,31} {12,13,23,32} %e A326218 {23} {12,31} {12,13,32} {12,13,31,32} %e A326218 {31} {12,32} {12,21,23} {12,21,23,32} %e A326218 {32} {13,21} {12,21,31} {12,21,31,32} %e A326218 {13,23} {12,21,32} {13,21,23,31} %e A326218 {13,31} {12,23,32} {13,23,31,32} %e A326218 {13,32} {12,31,32} {21,23,31,32} %e A326218 {21,23} {13,21,23} %e A326218 {21,31} {13,21,31} %e A326218 {21,32} {13,23,31} %e A326218 {23,31} {13,23,32} %e A326218 {23,32} {13,31,32} %e A326218 {31,32} {21,23,31} %e A326218 {21,23,32} %e A326218 {21,31,32} %e A326218 {23,31,32} %t A326218 Table[Length[Select[Subsets[Select[Tuples[Range[n],2],UnsameQ@@#&]],FindHamiltonianCycle[Graph[Range[n],DirectedEdge@@@#]]=={}&]],{n,4}] (* Mathematica 8.0+. Warning: Using HamiltonianGraphQ instead of FindHamiltonianCycle returns a(4) = 2896 which is incorrect *) %Y A326218 The unlabeled case is A326222. %Y A326218 The undirected case is A326207. %Y A326218 The case with loops is A326220. %Y A326218 Digraphs (without loops) containing a Hamiltonian cycle are A326219. %Y A326218 Digraphs (without loops) not containing a Hamiltonian path are A326216. %Y A326218 Cf. A000595, A002416, A003024, A003216, A246446, A326204, A326213, A326223, A326225. %K A326218 nonn,more %O A326218 0,3 %A A326218 _Gus Wiseman_, Jun 15 2019