This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326229 #13 Jan 17 2020 10:45:50 %S A326229 2,3,5,5,10,28,7,35,42,70,10,60,168,75,2,12,70,203,80,40,1820,17,75, %T A326229 287,175,208,2590,110,18,210,308,485,425,4795,123,1850,23,240,518,850, %U A326229 873,5565,192,3815,2520,25,385,1043,970,1608,8330,462,5840,5432,220,30,430,1057,1255,1713,8470,948,6270,6020,560,2023,32 %N A326229 Square array T(n,k) where row n >= 1 lists numbers m > 1 such that 6*m^n +- 1 are twin primes; read by falling antidiagonals. %C A326229 We assume that all rows have infinite length, in case this should not be the case we would fill the row with 0's after the last term. %C A326229 From [Dinculescu] we know that whenever 2|n or 3|n, then all terms of row n are multiples of 5 resp. of 7 (where | means "divides"), cf. A326231 - A326234. We do not know other (independent) pairs (a, b) such that (m^b in A002822) implies a|m. %H A326229 A. Dinculescu, <a href="http://www.utgjiu.ro/math/sma/v13/p13_11.pdf">On the Numbers that Determine the Distribution of Twin Primes</a>, Surveys in Mathematics and its Applications, 13 (2018), 171-181. %e A326229 The array starts: %e A326229 [ 2 3 5 7 10 12 17 18 ...] = A002822 \ {1} %e A326229 [ 5 10 35 60 70 75 210 240 ...] = A326232 \ {1} %e A326229 [ 28 42 168 203 287 308 518 1043 ...] = A326234 \ {1} %e A326229 [ 70 75 80 175 485 850 970 1255 ...] %e A326229 [ 2 40 208 425 873 1608 1713 1718 ...] %e A326229 [1820 2590 4795 5565 8330 8470 10640 10710 ...] = A326236 \ {1} %e A326229 [ 110 123 192 462 948 1242 1255 1747 ...] %e A326229 [1850 3815 5840 6270 8075 8960 9210 10420 ...] %e A326229 [2520 5432 6020 10535 24017 29092 29295 29967 ...] %e A326229 (...) %e A326229 Column 1 is A326230(n): smallest m > 1 such that m^n is in A002822 (twin ranks). %o A326229 (PARI) A326229_row(n,LENGTH=20)={my(g=5^!(n%2)*7^!(n%3),m=max(g,2)-g); vector(LENGTH,i,while(m+=g,for(s=1,2,ispseudoprime(6*m^n+(-1)^s)||next(2));break);m)} %Y A326229 Cf. A002822, A326230, A326231, ..., A326236. %K A326229 nonn,tabl %O A326229 1,1 %A A326229 _M. F. Hasler_, Jun 16 2019