This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326234 #12 Jun 22 2019 21:27:42 %S A326234 1,28,42,168,203,287,308,518,1043,1057,1512,1603,1638,1680,1757,1988, %T A326234 2905,3367,3927,4018,4928,5033,5145,5257,5292,5432,5733,6762,7182, %U A326234 7210,7798,8715,10213,10318,10668,10745,11088,12243,13552,14245,14588,14707,15155,15323,15687,15722,15757 %N A326234 Numbers n such that N = n^3 is a twin rank (A002822: 6N +- 1 are twin primes). %C A326234 Dinculescu notes that when n^2 or n^3 is a twin rank > 1 (i.e., in A002822), then n is a multiple of 5, resp. 7. It is unknown whether there exist other pairs (a, b) different from (5, 2) and (7, 3) such that n^b => a | n. (Of course (5, 2k) and (7, 3k) and (35, 6k) is a solution for any k.) See A326233 for the terms > 1 divided by 7. %C A326234 See A326232 and A326231 for the case n^2, A326236 and A326235 for n^6. %H A326234 A. Dinculescu, <a href="/A326234/b326234.txt">Table of n, a(n) for n = 1..14709</a> %H A326234 A. Dinculescu, <a href="http://www.utgjiu.ro/math/sma/v13/p13_11.pdf">On the Numbers that Determine the Distribution of Twin Primes</a>, Surveys in Mathematics and its Applications, 13 (2018), 171-181. %F A326234 a(n) = 7*A326233(n-1), n >= 2. %o A326234 (PARI) select( is(n)=!for(s=1,2,ispseudoprime(6*n^3+(-1)^s)||return), [1..10^5]) %Y A326234 Cf. A002822, A326233 (a(n)/7, n>1), A326231, A326232 (analog for n^2), A326235, A326236 (analog for n^6), A326230 (least twin rank n^k > 1 for given k). %K A326234 nonn %O A326234 1,2 %A A326234 _M. F. Hasler_ and _Antonie Dinculescu_, Jun 14 2019