cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326246 Number of crossing, capturing set partitions of {1..n}.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 37, 307, 2173, 14344, 92402, 596688
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

A set partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y, and capturing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < t < y or z < x < y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The a(5) = 3 set partitions:
  {{1,3,4},{2,5}}
  {{1,3,5},{2,4}}
  {{1,4},{2,3,5}}
		

Crossrefs

MM-numbers of crossing, capturing multiset partitions are A326259.
Crossing set partitions are A016098.
Capturing set partitions are A326243.
Crossing, nesting set partitions are A326248.
Crossing, non-capturing set partitions are A326245.
Non-crossing, capturing set partitions are A122880 (conjecture).

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x