This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326255 #9 Oct 29 2024 19:52:33 %S A326255 667,989,1334,1633,1769,1817,1978,2001,2021,2323,2461,2599,2623,2668, %T A326255 2967,2987,3197,3266,3335,3538,3634,3713,3749,3956,3979,4002,4042, %U A326255 4163,4171,4331,4379,4429,4439,4577,4646,4669,4747,4819,4859,4899,4922,4945,5029,5198 %N A326255 MM-numbers of capturing multiset partitions. %C A326255 First differs from A326256 in having 2599. %C A326255 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. %C A326255 A multiset partition is capturing if it has two blocks of the form {...x...y...} and {...z...t...} where x < z and t < y or z < x and y < t. This is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting. %e A326255 The sequence of terms together with their multiset multisystems begins: %e A326255 667: {{2,2},{1,3}} %e A326255 989: {{2,2},{1,4}} %e A326255 1334: {{},{2,2},{1,3}} %e A326255 1633: {{2,2},{1,1,3}} %e A326255 1769: {{1,3},{1,2,2}} %e A326255 1817: {{2,2},{1,5}} %e A326255 1978: {{},{2,2},{1,4}} %e A326255 2001: {{1},{2,2},{1,3}} %e A326255 2021: {{1,4},{2,3}} %e A326255 2323: {{2,2},{1,6}} %e A326255 2461: {{2,2},{1,1,4}} %e A326255 2599: {{2,2},{1,2,3}} %e A326255 2623: {{1,4},{1,2,2}} %e A326255 2668: {{},{},{2,2},{1,3}} %e A326255 2967: {{1},{2,2},{1,4}} %e A326255 2987: {{1,3},{2,2,2}} %e A326255 3197: {{2,2},{1,7}} %e A326255 3266: {{},{2,2},{1,1,3}} %e A326255 3335: {{2},{2,2},{1,3}} %e A326255 3538: {{},{1,3},{1,2,2}} %t A326255 capXQ[stn_]:=MatchQ[stn,{___,{___,x_,___,y_,___},___,{___,z_,___,t_,___},___}/;x<z&&y>t||x>z&&y<t]; %t A326255 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326255 Select[Range[10000],capXQ[primeMS/@primeMS[#]]&] %Y A326255 MM-numbers of crossing multiset partitions are A324170. %Y A326255 MM-numbers of nesting multiset partitions are A326256. %Y A326255 MM-numbers of crossing capturing multiset partitions are A326259. %Y A326255 Capturing set partitions are A326243. %Y A326255 Cf. A001055, A034827, A058681, A112798, A117662, A122880, A302242. %Y A326255 Cf. A326211, A326249, A054391, A326257, A326258. %K A326255 nonn %O A326255 1,1 %A A326255 _Gus Wiseman_, Jun 20 2019