This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326256 #4 Jun 21 2019 22:46:02 %S A326256 667,989,1334,1633,1769,1817,1978,2001,2021,2323,2461,2623,2668,2967, %T A326256 2987,3197,3266,3335,3538,3634,3713,3749,3956,3979,4002,4042,4171, %U A326256 4331,4379,4429,4439,4577,4646,4669,4747,4819,4859,4899,4922,4945,5029,5246,5267,5307 %N A326256 MM-numbers of nesting multiset partitions. %C A326256 First differs from A326255 in lacking 2599. %C A326256 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. %C A326256 A multiset partition is nesting if it has two blocks of the form {...x,y...}, {...z,t...} where x < z and t < y or z < x and y < t. This is a stronger condition than capturing, so for example {{1,3,5},{2,4}} is capturing but not nesting. %e A326256 The sequence of terms together with their multiset multisystems begins: %e A326256 667: {{2,2},{1,3}} %e A326256 989: {{2,2},{1,4}} %e A326256 1334: {{},{2,2},{1,3}} %e A326256 1633: {{2,2},{1,1,3}} %e A326256 1769: {{1,3},{1,2,2}} %e A326256 1817: {{2,2},{1,5}} %e A326256 1978: {{},{2,2},{1,4}} %e A326256 2001: {{1},{2,2},{1,3}} %e A326256 2021: {{1,4},{2,3}} %e A326256 2323: {{2,2},{1,6}} %e A326256 2461: {{2,2},{1,1,4}} %e A326256 2623: {{1,4},{1,2,2}} %e A326256 2668: {{},{},{2,2},{1,3}} %e A326256 2967: {{1},{2,2},{1,4}} %e A326256 2987: {{1,3},{2,2,2}} %e A326256 3197: {{2,2},{1,7}} %e A326256 3266: {{},{2,2},{1,1,3}} %e A326256 3335: {{2},{2,2},{1,3}} %e A326256 3538: {{},{1,3},{1,2,2}} %e A326256 3634: {{},{2,2},{1,5}} %t A326256 nesXQ[stn_]:=MatchQ[stn,{___,{___,x_,y_,___},___,{___,z_,t_,___},___}/;(x<z&&y>t)||(x>z&&y<t)]; %t A326256 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326256 Select[Range[10000],nesXQ[primeMS/@primeMS[#]]&] %Y A326256 MM-numbers of crossing multiset partitions are A324170. %Y A326256 MM-numbers of capturing multiset partitions are A326255. %Y A326256 Nesting set partitions are A016098. %Y A326256 Capturing set partitions are A326243. %Y A326256 Cf. A001055, A034827, A058681, A112798, A117662, A302242. %Y A326256 Cf. A326211, A326248, A326257, A326258, A326260. %K A326256 nonn %O A326256 1,1 %A A326256 _Gus Wiseman_, Jun 20 2019