This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326258 #5 Jun 22 2019 23:14:11 %S A326258 145,169,215,290,338,355,377,395,430,435,473,481,505,507,535,559,565, %T A326258 580,645,667,676,695,710,725,754,790,793,803,815,841,845,860,865,869, %U A326258 870,905,923,946,962,965,989,995,1010,1014,1015,1027,1065,1070,1073,1075 %N A326258 MM-numbers of unsortable multiset partitions (with empty parts allowed). %C A326258 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. %C A326258 A multiset partition is unsortable if no permutation has an ordered concatenation. For example, the multiset partition ((1,2),(1,1,1),(2,2,2)) is sortable because the permutation ((1,1,1),(1,2),(2,2,2)) has concatenation (1,1,1,1,2,2,2,2), which is weakly increasing. %e A326258 The sequence of terms together with their multiset multisystems begins: %e A326258 145: {{2},{1,3}} %e A326258 169: {{1,2},{1,2}} %e A326258 215: {{2},{1,4}} %e A326258 290: {{},{2},{1,3}} %e A326258 338: {{},{1,2},{1,2}} %e A326258 355: {{2},{1,1,3}} %e A326258 377: {{1,2},{1,3}} %e A326258 395: {{2},{1,5}} %e A326258 430: {{},{2},{1,4}} %e A326258 435: {{1},{2},{1,3}} %e A326258 473: {{3},{1,4}} %e A326258 481: {{1,2},{1,1,2}} %e A326258 505: {{2},{1,6}} %e A326258 507: {{1},{1,2},{1,2}} %e A326258 535: {{2},{1,1,4}} %e A326258 559: {{1,2},{1,4}} %e A326258 565: {{2},{1,2,3}} %e A326258 580: {{},{},{2},{1,3}} %e A326258 645: {{1},{2},{1,4}} %e A326258 667: {{2,2},{1,3}} %t A326258 lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; %t A326258 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326258 Select[Range[1000],!OrderedQ[Join@@Sort[primeMS/@primeMS[#],lexsort]]&] %Y A326258 Unsortable set partitions are A058681. %Y A326258 Normal unsortable multiset partitions are A326211. %Y A326258 Unsortable digraphs are A326209. %Y A326258 MM-numbers of crossing multiset partitions are A324170. %Y A326258 MM-numbers of nesting multiset partitions are A326256. %Y A326258 MM-numbers of capturing multiset partitions are A326255. %Y A326258 Cf. A001055, A016098, A056239, A112798, A302242. %Y A326258 Cf. A326212, A326243, A326257, A326259. %K A326258 nonn %O A326258 1,1 %A A326258 _Gus Wiseman_, Jun 22 2019