This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326259 #6 Oct 29 2024 19:54:51 %S A326259 8903,15167,16717,17806,18647,20329,20453,21797,22489,25607,26709, %T A326259 27649,29551,30334,31373,32741,33434,34691,35177,35612,35821,37091, %U A326259 37133,37294,37969,38243,39493,40658,40906,41449,42011,42949,43594,43817,43873,44515,44861 %N A326259 MM-numbers of crossing, capturing multiset partitions (with empty parts allowed). %C A326259 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. %C A326259 A multiset partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y. It is capturing if it has two blocks of the form {...x...y...} and {...z...t...} where x < z and y > t or x > z and y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting. %e A326259 The sequence of terms together with their multiset multisystems begins: %e A326259 8903: {{1,3},{2,2,4}} %e A326259 15167: {{1,3},{2,2,5}} %e A326259 16717: {{2,4},{1,3,3}} %e A326259 17806: {{},{1,3},{2,2,4}} %e A326259 18647: {{1,3},{2,2,6}} %e A326259 20329: {{1,3},{1,2,2,4}} %e A326259 20453: {{1,2,3},{1,2,4}} %e A326259 21797: {{1,1,3},{2,2,4}} %e A326259 22489: {{1,4},{2,2,5}} %e A326259 25607: {{1,3},{2,2,7}} %e A326259 26709: {{1},{1,3},{2,2,4}} %e A326259 27649: {{1,4},{2,2,6}} %e A326259 29551: {{1,3},{2,2,8}} %e A326259 30334: {{},{1,3},{2,2,5}} %e A326259 31373: {{2,5},{1,3,3}} %e A326259 32741: {{1,3},{2,2,2,4}} %e A326259 33434: {{},{2,4},{1,3,3}} %e A326259 34691: {{1,2,3},{2,2,4}} %e A326259 35177: {{1,3},{1,2,2,5}} %e A326259 35612: {{},{},{1,3},{2,2,4}} %t A326259 croXQ[stn_]:=MatchQ[stn,{___,{___,x_,___,y_,___},___,{___,z_,___,t_,___},___}/;x<z<y<t||z<x<t<y]; %t A326259 capXQ[stn_]:=MatchQ[stn,{___,{___,x_,___,y_,___},___,{___,z_,___,t_,___},___}/;x<z&&t<y||z<x&&y<t]; %t A326259 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326259 Select[Range[100000],capXQ[primeMS/@primeMS[#]]&&croXQ[primeMS/@primeMS[#]]&] %Y A326259 Crossing set partitions are A000108. %Y A326259 Capturing set partitions are A326243. %Y A326259 Crossing, capturing set partitions are A326246. %Y A326259 MM-numbers of crossing multiset partitions are A324170. %Y A326259 MM-numbers of nesting multiset partitions are A326256. %Y A326259 MM-numbers of capturing multiset partitions are A326255. %Y A326259 MM-numbers of unsortable multiset partitions are A326258. %Y A326259 Cf. A001055, A001519, A016098, A056239, A058681, A112798, A122880, A302242. %Y A326259 Cf. A326211, A326245, A326248, A326249, A054391. %K A326259 nonn %O A326259 1,1 %A A326259 _Gus Wiseman_, Jun 22 2019