This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326262 #3 Jun 20 2019 22:39:38 %S A326262 1,2,7,80,1742,51842,1902589,82219592,4071164749,226803165574, %T A326262 14029472009781,953926536359084,70723894649169937,5679305945331227594, %U A326262 491179287055641264989,45527108214667404725616,4503148842172835722939285,473502491643614888369261116,52748299277043902326373361722,6206479798643382507763241117360,769187266152748793100664986340382,100156538984193022704291755068539370 %N A326262 G.f. A(x) satisfies: 1 = Sum_{n>=0} ( 1/(1-x)^(2*n) - A(x) )^n. %F A326262 G.f. A(x) satisfies: %F A326262 (1) 1 = Sum_{n>=0} ( 1/(1-x)^(2*n) - A(x) )^n. %F A326262 (2) 1 = Sum_{n>=0} ( 1 - (1-x)^(2*n)*A(x) )^n / (1-x)^(2*n^2). %F A326262 (3) 1 = Sum_{n>=0} (1-x)^(2*n) / ( (1-x)^(2*n) + A(x) )^(n+1). %e A326262 G.f.: A(x) = 1 + 2*x + 7*x^2 + 80*x^3 + 1742*x^4 + 51842*x^5 + 1902589*x^6 + 82219592*x^7 + 4071164749*x^8 + 226803165574*x^9 + 14029472009781*x^10 + ... %e A326262 such that %e A326262 1 = 1 + (1/(1-x)^2 - A(x)) + (1/(1-x)^4 - A(x))^2 + (1/(1-x)^6 - A(x))^3 + (1/(1-x)^8 - A(x))^4 + (1/(1-x)^10 - A(x))^5 + (1/(1-x)^12 - A(x))^6 + (1/(1-x)^14 - A(x))^7 + ... %e A326262 Also, %e A326262 1 = 1/(1 + A(x)) + (1-x)^2/((1-x)^2 + A(x))^2 + (1-x)^4/((1-x)^4 + A(x))^3 + (1-x)^6/((1-x)^6 + A(x))^4 + (1-x)^8/((1-x)^8 + A(x))^5 + (1-x)^10/((1-x)^10 + A(x))^6 + (1-x)^12/((1-x)^12 + A(x))^7 + ... %o A326262 (PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1-x)^(-2*m) - Ser(A))^m ) )[#A] ); H=A; A[n+1]} %o A326262 for(n=0, 30, print1(a(n), ", ")) %Y A326262 Cf. A304639, A326263, A326264, A326265. %Y A326262 Cf. A321602. %K A326262 nonn %O A326262 0,2 %A A326262 _Paul D. Hanna_, Jun 20 2019