This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326277 #5 Jun 22 2019 23:14:35 %S A326277 0,0,0,0,1,22,314,3711,39947 %N A326277 Number of crossing normal multiset partitions of weight n. %C A326277 A multiset partition is normal if it covers an initial interval of positive integers. %C A326277 A multiset partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y. %e A326277 The a(5) = 22 crossing normal multiset partitions: %e A326277 {{1,3},{1,2,4}} {{1},{1,3},{2,4}} %e A326277 {{1,3},{2,2,4}} {{1},{2,4},{3,5}} %e A326277 {{1,3},{2,3,4}} {{2},{1,3},{2,4}} %e A326277 {{1,3},{2,4,4}} {{2},{1,4},{3,5}} %e A326277 {{1,3},{2,4,5}} {{3},{1,3},{2,4}} %e A326277 {{1,4},{2,3,5}} {{3},{1,4},{2,5}} %e A326277 {{2,4},{1,1,3}} {{4},{1,3},{2,4}} %e A326277 {{2,4},{1,2,3}} {{4},{1,3},{2,5}} %e A326277 {{2,4},{1,3,3}} {{5},{1,3},{2,4}} %e A326277 {{2,4},{1,3,4}} %e A326277 {{2,4},{1,3,5}} %e A326277 {{2,5},{1,3,4}} %e A326277 {{3,5},{1,2,4}} %t A326277 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A326277 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A326277 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A326277 croXQ[stn_]:=MatchQ[stn,{___,{___,x_,___,y_,___},___,{___,z_,___,t_,___},___}/;x<z<y<t||z<x<t<y]; %t A326277 Table[Length[Select[Join@@mps/@allnorm[n],croXQ]],{n,0,6}] %Y A326277 Crossing simple graphs are A326210. %Y A326277 Normal multiset partitions are A255906. %Y A326277 Non-crossing normal multiset partitions are A324171. %Y A326277 MM-numbers of crossing multiset partitions are A324170. %Y A326277 Cf. A000108, A016098, A054726, A058681. %Y A326277 Cf. A326211, A326212, A326255, A326256, A326258. %K A326277 nonn,more %O A326277 0,6 %A A326277 _Gus Wiseman_, Jun 22 2019