A326281 Let f(n) be a sequence of distinct Gaussian integers such that f(1) = 0 and for any n > 1, f(n) = f(floor(n/2)) + k(n)*g((1+i)^(A000120(n)-1) * (1-i)^A023416(n)) where k(n) > 0 is as small as possible and g(z) = z/gcd(Re(z), Im(z)); a(n) is the imaginary part of f(n).
0, -1, 1, -2, -1, 1, 2, -3, -3, -2, 0, -1, 2, 3, 3, -3, -4, -4, -3, -4, -2, 0, 1, -3, -1, 2, 3, 3, 4, 4, 3, -2, -4, -5, -5, -6, -5, -4, 0, -5, -5, -3, 1, -2, 1, 3, 2, -6, -4, -3, 2, -1, 4, 4, 5, 2, 4, 5, 6, 6, 5, 4, 2, -1, -2, -4, -5, -5, -6, -7, -5, -6, -7
Offset: 1
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..8191
- Rémy Sigrist, Density plot of the first 2^22-1 terms
- Rémy Sigrist, PARI program for A326281
Programs
-
PARI
See Links section.