cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326288 E.g.f.: Sum_{n>=0} 4^n * (exp(n*x) - 1)^n / n!.

This page as a plain text file.
%I A326288 #12 Jul 06 2019 09:22:25
%S A326288 1,4,68,2116,98436,6217924,503491204,50282169284,6023071906180,
%T A326288 847321700204740,137695169475601540,25505309294030757316,
%U A326288 5326002105122774427524,1242268006104279981404868,321107726934189274515747460,91359880704866957348006879172,28441686041231472428045000672644,9637951929231839144943126955386052,3538621024404268912313596289954242692,1401869934089183216934147248975602680260
%N A326288 E.g.f.: Sum_{n>=0} 4^n * (exp(n*x) - 1)^n / n!.
%C A326288 More generally, the following sums are equal:
%C A326288 (1) Sum_{n>=0} (p + q^n)^n * r^n/n!,
%C A326288 (2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
%C A326288 here, q = exp(x) with p = -1, r = 4.
%C A326288 In general, let F(x) be a formal power series in x such that F(0)=1, then
%C A326288 Sum_{n>=0} m^n * F(q^n*r)^b * log( F(q^n*r) )^n / n! =
%C A326288 Sum_{n>=0} r^n * [y^n] F(y)^(m*q^n + p);
%C A326288 here, F(x) = exp(x), q = exp(x), p = -1, r = 4, m = 1.
%H A326288 Paul D. Hanna, <a href="/A326288/b326288.txt">Table of n, a(n) for n = 0..300</a>
%F A326288 E.g.f.: Sum_{n>=0} 4^n * (exp(n*x) - 1)^n / n!.
%F A326288 E.g.f.: Sum_{n>=0} 4^n * exp(n^2*x) * exp( -4*exp(n*x) ) / n!.
%F A326288 O.g.f.: Sum_{n>=0} 4^n * n^n * x^n / Product_{k=1..n} (1 - n*k*x).
%F A326288 a(n) = Sum_{k=0..n} 4^k * k^n * Stirling2(n,k).
%e A326288 E.g.f.: A(x) = 1 + 4*x + 68*x^2/2! + 2116*x^3/3! + 98436*x^4/4! + 6217924*x^5/5! + 503491204*x^6/6! + 50282169284*x^7/7! + 6023071906180*x^8/8! + 847321700204740*x^9/9! + ...
%e A326288 such that
%e A326288 A(x) = 1 + 4*(exp(x) - 1) + 4^2*(exp(2*x) - 1)^2/2! + 4^3*(exp(3*x) - 1)^3/3! + 4^4*(exp(4*x) - 1)^4/4! + 4^5*(exp(5*x) - 1)^5/5! + 4^6*(exp(6*x) - 1)^6/6! + ...
%e A326288 also
%e A326288 A(x) = exp(-4) + 4*exp(x)*exp(-4*exp(x)) + 4^2*exp(4*x)*exp(-4*exp(2*x))/2! + 4^3*exp(9*x)*exp(-4*exp(3*x))/3! + 4^4*exp(16*x)*exp(-4*exp(4*x))/4! + 4^5*exp(25*x)*exp(-4*exp(5*x))/5! + 4^6*exp(36*x)*exp(-4*exp(6*x))/6! + ...
%e A326288 ORDINARY GENERATING FUNCTION.
%e A326288 O.g.f.: B(x) = 1 + 4*x + 68*x^2 + 2116*x^3 + 98436*x^4 + 6217924*x^5 + 503491204*x^6 + 50282169284*x^7 + 6023071906180*x^8 + 847321700204740*x^9 + ...
%e A326288 such that
%e A326288 B(x) = 1 + 4*x/(1-x) + 4^2*2^2*x^2/((1-2*x)*(1-4*x)) + 4^3*3^3*x^3/((1-3*x)*(1-6*x)*(1-9*x)) + 4^4*4^4*x^4/((1-4*x)*(1-8*x)*(1-12*x)*(1-16*x)) + 4^5*5^5*x^5/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)) + ...
%o A326288 (PARI) {a(n) = sum(k=0, n, 4^k * k^n * stirling(n, k, 2) )}
%o A326288 for(n=0, 30, print1(a(n), ", "))
%o A326288 (PARI) /* E.g.f.: Sum_{n>=0} 4^n * (exp(n*x) - 1)^n / n! */
%o A326288 {a(n) = n! * polcoeff(sum(m=0, n, 4^m * (exp(m*x +x*O(x^n)) - 1)^m / m!), n)}
%o A326288 for(n=0, 30, print1(a(n), ", "))
%o A326288 (PARI) /* O.g.f.: Sum_{n>=0} 4^n * n^n * x^n / Product_{k=1..n} (1 - n*k*x) */
%o A326288 {a(n) = polcoeff(sum(m=0, n, 4^m * m^m * x^m / prod(k=1, m, 1-m*k*x +x*O(x^n))), n)}
%o A326288 for(n=0, 30, print1(a(n), ", "))
%Y A326288 Cf. A108459, A326270, A326271.
%K A326288 nonn
%O A326288 0,2
%A A326288 _Paul D. Hanna_, Jun 28 2019