This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326291 #6 Jun 25 2019 10:10:48 %S A326291 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0, %T A326291 0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,1,0,0, %U A326291 0,1,0,2,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0 %N A326291 Number of unsortable factorizations of n. %C A326291 A factorization into factors > 1 is unsortable if there is no permutation (c_1,...,c_k) of the factors such that the maximum prime factor of c_i is at most the minimum prime factor of c_{i+1}. For example, the factorization (6*8*27) is sortable because the permutation (8,6,27) satisfies the condition. %e A326291 The a(180) = 10 unsortable factorizations: %e A326291 (2*3*3*10) (5*6*6) (3*60) %e A326291 (2*3*30) (6*30) %e A326291 (2*9*10) (9*20) %e A326291 (3*3*20) (10*18) %e A326291 (3*6*10) %e A326291 Missing from this list are: %e A326291 (2*2*3*3*5) (2*2*5*9) (4*5*9) (2*90) (180) %e A326291 (2*3*5*6) (2*2*45) (4*45) %e A326291 (3*3*4*5) (2*5*18) (5*36) %e A326291 (2*2*3*15) (2*6*15) (12*15) %e A326291 (3*4*15) %e A326291 (3*5*12) %t A326291 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A326291 lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; %t A326291 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326291 Table[Length[Select[facs[n],!OrderedQ[Join@@Sort[primeMS/@#,lexsort]]&]],{n,100}] %Y A326291 Unsortable set partitions are A058681. %Y A326291 Unsortable normal multiset partitions are A326211. %Y A326291 MM-numbers of unsortable multiset partitions are A326258. %Y A326291 Cf. A000108, A001055, A001519, A016098, A112798, A302242, A324170, A324171. %Y A326291 Cf. A326209, A326212, A326243, A326256, A326257. %K A326291 nonn %O A326291 1,60 %A A326291 _Gus Wiseman_, Jun 24 2019