cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326294 Number of connected simple graphs on a subset of {1..n} with no crossing or nesting edges.

This page as a plain text file.
%I A326294 #8 Jun 29 2019 23:01:57
%S A326294 1,1,2,8,35,147,600,2418
%N A326294 Number of connected simple graphs on a subset of {1..n} with no crossing or nesting edges.
%C A326294 Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.
%H A326294 Eric Marberg, <a href="http://arxiv.org/abs/1203.5738">Crossings and nestings in colored set partitions</a>, arXiv preprint arXiv:1203.5738 [math.CO], 2012.
%F A326294 Conjecture: a(n) = A052161(n - 2) + 1.
%e A326294 The a(4) = 35 edge-sets:
%e A326294   {}  {12}  {12,13}  {12,13,14}  {12,13,14,34}
%e A326294       {13}  {12,14}  {12,13,23}  {12,13,23,34}
%e A326294       {14}  {12,23}  {12,13,34}  {12,14,24,34}
%e A326294       {23}  {12,24}  {12,14,24}  {12,23,24,34}
%e A326294       {24}  {13,14}  {12,14,34}
%e A326294       {34}  {13,23}  {12,23,24}
%e A326294             {13,34}  {12,23,34}
%e A326294             {14,24}  {12,24,34}
%e A326294             {14,34}  {13,14,34}
%e A326294             {23,24}  {13,23,34}
%e A326294             {23,34}  {14,24,34}
%e A326294             {24,34}  {23,24,34}
%t A326294 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A326294 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&&!MatchQ[#,{___,{x_,y_},___,{z_,t_},___}/;x<z<y<t||z<x<t<y||x<z<t<y||z<x<y<t]&]],{n,0,5}]
%Y A326294 The inverse binomial transform is the covering case A326339.
%Y A326294 Covering graphs with no crossing or nesting edges are A326329.
%Y A326294 Connected simple graphs are A001349.
%Y A326294 Graphs without crossing or nesting edges are A326244.
%Y A326294 Cf. A006125, A054726, A117662, A136653.
%Y A326294 Cf. A324169, A326210, A326293, A326340.
%K A326294 nonn,more
%O A326294 0,3
%A A326294 _Gus Wiseman_, Jun 29 2019