This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326297 #51 Nov 01 2024 11:49:15 %S A326297 1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,4,1,4,1,1,1,1,1,1,1, %T A326297 1,2,1,1,1,1,1,1,1,1,2,1,1,1,6,4,1,1,1,4,1,1,1,1,1,1,1,1,2,1,1,1,1,1, %U A326297 1,1,1,2,1,1,4,1,1,1,1,1,8,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,6,2,4 %N A326297 If n = Product (p_j^k_j) then a(n) = Product ((p_j - 1)^(k_j - 1)). %H A326297 Antti Karttunen, <a href="/A326297/b326297.txt">Table of n, a(n) for n = 1..20000</a> %H A326297 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>. %H A326297 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>. %F A326297 a(n) = A003958(n) / abs(A023900(n)) = abs(A325126(n)) / A007947(n). %F A326297 Dirichlet g.f.: Product_{p prime} (1 + 1/(p^s - p + 1)). - _Amiram Eldar_, Dec 07 2023 %F A326297 a(n) = A003958(n)/A173557(n). - _Ridouane Oudra_, Oct 29 2024 %e A326297 a(98) = a(2 * 7^2) = (2 - 1)^(1 - 1) * (7 - 1)^(2 - 1) = 6. %p A326297 seq(mul((p-1)^(padic[ordp](n,p)-1), p in numtheory[factorset](n)), n =1..100); # _Ridouane Oudra_, Oct 29 2024 %t A326297 a[n_] := If[n == 1, 1, Times @@ ((#[[1]] - 1)^(#[[2]] - 1) & /@ FactorInteger[n])]; Table[a[n], {n, 1, 100}] %o A326297 (PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1]--; f[k,2]--); factorback(f); \\ _Michel Marcus_, Mar 03 2020 %o A326297 (Python) %o A326297 from math import prod %o A326297 from sympy import factorint %o A326297 def a(n): return prod((p-1)**(e-1) for p, e in factorint(n).items()) %o A326297 print([a(n) for n in range(1, 101)]) # _Michael S. Branicky_, Aug 30 2021 %Y A326297 Cf. A003557, A003958, A003959, A007947, A023900, A064478, A064549, A122132 (positions of 1's), A125131, A173557, A325126, A327564. %K A326297 nonn,mult %O A326297 1,9 %A A326297 _Ilya Gutkovskiy_, Mar 03 2020