This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326303 #54 Oct 24 2019 11:34:45 %S A326303 1,1,2,3,1,1,8,41,65,11,1,1,16,147,13247,907,109,73,1,1,128,8649, %T A326303 704707,1739,101717,3419,515,43,1,1,256,32307,660278641,6567221, %U A326303 4557449,29273,76667,15389,251,67,1,1,1024,487889,357852111131,54281321,15689290781,151587391,115560397,1659311,254977,34061,1733,289,1,1 %N A326303 Triangular array, read by rows: T(n,k) = numerator of Jtilde_k(n), 1 <= k <= 2*n+2. %C A326303 When a general definition was made in a recent paper, it was slightly different from the previous definition. Please check the annotation on page 15 of the paper in 2019. %H A326303 Seiichi Manyama, <a href="/A326303/b326303.txt">Rows n = 0..15, flattened</a> %H A326303 Kazufumi Kimoto, Masato Wakayama, <a href="http://doi.org/10.2206/kyushujm.60.383">Apéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators</a>, Kyushu Journal of Mathematics, Vol. 60 (2006) No. 2 p. 383-404 (see Table 2). %H A326303 Kazufumi Kimoto, Masato Wakayama, <a href="https://arxiv.org/abs/1905.01775">Apéry-like numbers for non-commutative harmonic oscillators and automorphic integrals</a>, arXiv:1905.01775 [math.PR], 2019. See p.22. %F A326303 4*n^2 * Jtilde_k(n) = (8*n^2 - 8*n + 3) * Jtilde_k(n-1) - 4*(n - 1)^2 * Jtilde_k(n-2) + 4 * Jtilde_{k - 2}(n-1). %F A326303 Jtilde_n(2*n+1) = Jtilde_n(2*n+2) = 1/A001044(n). So T(n,2*n+1) = T(n,2*n+2) = 1. %e A326303 Triangle begins: %e A326303 1, 1; %e A326303 2/3, 3/4, 1, 1; %e A326303 8/15, 41/64, 65/48, 11/8, 1/4, 1/4; %e A326303 16/35, 147/256, 13247/8640, 907/576, 109/216, 73/144, 1/36, 1/36; %o A326303 (Ruby) %o A326303 def f(n) %o A326303 return 1 if n < 2 %o A326303 (1..n).inject(:*) %o A326303 end %o A326303 def Jtilde(k, n) %o A326303 return 0 if k == 0 %o A326303 return (2r ** n * f(n)) ** 2 / f(2 * n + 1) if k == 1 %o A326303 if n == 0 %o A326303 return 1 if k == 2 %o A326303 return 0 %o A326303 end %o A326303 if n == 1 %o A326303 return 3r / 4 if k == 2 %o A326303 return 1 if k == 3 || k == 4 %o A326303 return 0 %o A326303 end %o A326303 ((8r * n * n - 8 * n + 3) * Jtilde(k, n - 1) - 4 * (n - 1) ** 2 * Jtilde(k, n - 2) + 4 * Jtilde(k - 2, n - 1)) / (4 * n * n) %o A326303 end %o A326303 def A326303(n) %o A326303 (0..n).map{|i| (1..2 * i + 2).map{|j| Jtilde(j, i).numerator}}.flatten %o A326303 end %o A326303 p A326303(10) %Y A326303 Cf. A260832 (k=2), A264541 (k=3), A326748 (denominator). %K A326303 nonn,frac,tabf %O A326303 0,3 %A A326303 _Seiichi Manyama_, Oct 19 2019