cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326323 A(n, k) = A_{n}(k) where A_{n}(x) are the Eulerian polynomials, square array read by ascending antidiagonals, for n >= 0 and k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 13, 24, 1, 1, 1, 5, 22, 75, 120, 1, 1, 1, 6, 33, 160, 541, 720, 1, 1, 1, 7, 46, 285, 1456, 4683, 5040, 1, 1, 1, 8, 61, 456, 3081, 15904, 47293, 40320, 1, 1, 1, 9, 78, 679, 5656, 40005, 202672, 545835, 362880, 1
Offset: 0

Views

Author

Peter Luschny, Jun 27 2019

Keywords

Examples

			Array starts:
  k=0: 1, 1, 1,  1,    1,     1,      1,        1,         1, ... [A000012]
  k=1: 1, 1, 2,  6,   24,   120,    720,     5040,     40320, ... [A000142]
  k=2: 1, 1, 3, 13,   75,   541,   4683,    47293,    545835, ... [A000670]
  k=3: 1, 1, 4, 22,  160,  1456,  15904,   202672,   2951680, ... [A122704]
  k=4: 1, 1, 5, 33,  285,  3081,  40005,   606033,  10491885, ... [A255927]
  k=5: 1, 1, 6, 46,  456,  5656,  84336,  1467376,  29175936, ... [A326324]
  k=6: 1, 1, 7, 61,  679,  9445, 158095,  3088765,  68958295, ... [A384525]
  k=7: 1, 1, 8, 78,  960, 14736, 272448,  5881968, 145105920, ... [A384514]
  k=8: 1, 1, 9, 97, 1305, 21841, 440649, 10386817, 279768825, ...
Seen as a triangle:
  [0], 1
  [1], 1, 1
  [2], 1, 1, 1
  [3], 1, 1, 2,  1
  [4], 1, 1, 3,  6,   1
  [5], 1, 1, 4, 13,  24,    1
  [6], 1, 1, 5, 22,  75,  120,     1
  [7], 1, 1, 6, 33, 160,  541,   720,     1
  [8], 1, 1, 7, 46, 285, 1456,  4683,  5040,     1
  [9], 1, 1, 8, 61, 456, 3081, 15904, 47293, 40320, 1
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> add(combinat:-eulerian1(k, j)*n^j, j=0..k):
    seq(seq(A(n-k, k), k=0..n), n=0..10);
    # Alternative:
    egf := n -> `if`(n=1, 1/(1-x), (n-1)/(n  - exp((n-1)*x))):
    ser := n -> series(egf(n), x, 21):
    for n from 0 to 6 do seq(k!*coeff(ser(n), x, k), k=0..9) od;
  • Mathematica
    a[n_, 0] := 1; a[n_, 1] := n!;
    a[n_, k_] := (k - 1)^(n + 1)/k HurwitzLerchPhi[1/k, -n, 0];
    (* Alternative: *) a[n_, k_] := Sum[StirlingS2[n, j] (k - 1)^(n - j) j!, {j, 0, n}];
    Table[Print[Table[a[n, k], {n, 0, 10}]], {k, 0, 8}]

Formula

A(n, k) = Sum_{j=0..k} a(k, j)*n^j where a(k, j) are the Eulerian numbers.
E.g.f.: (n - 1)/(n - exp((n-1)*x)) for n = 0 and n >= 2, 1/(1 - x) if n = 1.
A(n, 0) = 1; A(n, 1) = n!.
A(n, k) = (k - 1)^(n + 1)/k HurwitzLerchPhi(1/k, -n, 0) for k >= 2.
A(n, k) = Sum_{j=0..n} j! * Stirling2(n, j) * (k - 1)^(n - j) for k >= 2.