cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326325 a(n) = 2^n*n!*([z^n] exp(x*z)*tanh(z))(1/2).

Original entry on oeis.org

0, 2, 4, -10, -56, 362, 2764, -24610, -250736, 2873042, 36581524, -512343610, -7828053416, 129570724922, 2309644635484, -44110959165010, -898621108880096, 19450718635716002, 445777636063460644, -10784052561125704810, -274613643571568682776, 7342627959965776406282
Offset: 0

Views

Author

Peter Luschny, Jun 28 2019

Keywords

Crossrefs

Programs

  • Maple
    seq(1 - 4^n*euler(n, 1/4), n=0..21);
  • Mathematica
    p := CoefficientList[Series[Exp[x z] Tanh[z], {z, 0, 21}], z];
    norm := Table[2^n n!, {n, 0, 21}]; norm  (p /. x -> 1/2)

Formula

a(n) = 1 - 4^n*Euler(n, 1/4).
Let p(n, x) = -x^n + Sum_{k=0..n} binomial(n,k)*Euler(k)*(x+1)^(n-k) (the polynomials defined in A162660), then a(n) = 2^n*p(n, 1/2).