A326326 T(n, k) = [x^k] Sum_{j=0..n} Pochhammer(x, j), for 0 <= k <= n, triangle read by rows.
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 10, 15, 7, 1, 1, 34, 65, 42, 11, 1, 1, 154, 339, 267, 96, 16, 1, 1, 874, 2103, 1891, 831, 191, 22, 1, 1, 5914, 15171, 15023, 7600, 2151, 344, 29, 1, 1, 46234, 124755, 133147, 74884, 24600, 4880, 575, 37, 1
Offset: 0
Examples
Triangle starts: [0] [1] [1] [1, 1] [2] [1, 2, 1] [3] [1, 4, 4, 1] [4] [1, 10, 15, 7, 1] [5] [1, 34, 65, 42, 11, 1] [6] [1, 154, 339, 267, 96, 16, 1] [7] [1, 874, 2103, 1891, 831, 191, 22, 1] [8] [1, 5914, 15171, 15023, 7600, 2151, 344, 29, 1] [9] [1, 46234, 124755, 133147, 74884, 24600, 4880, 575, 37, 1]
Crossrefs
Programs
-
Maple
with(PolynomialTools): T_row := n -> CoefficientList(expand(add(pochhammer(x, j), j=0..n)),x): ListTools:-Flatten([seq(T_row(n), n=0..9)]);
-
Mathematica
Table[CoefficientList[FunctionExpand[Sum[Pochhammer[x, k], {k, 0, n}]], x], {n, 0, 10}] // Flatten
Formula
Sum_{k=0..n} T(n, k)*x^k = Sum_{k=0..n} (x)^k, where (x)^k denotes the rising factorial.
Conjecture: T(n,k) = Sum_{i=0..n} A132393(i,k) for 0 <= k <= n. - Werner Schulte, Mar 30 2022