A326327 A(n, k) = (m*k)! [x^k] MittagLefflerE(m, x)^(-n), for m = 2, n >= 0, k >= 0; square array read by descending antidiagonals.
1, 0, 1, 0, -1, 1, 0, 5, -2, 1, 0, -61, 16, -3, 1, 0, 1385, -272, 33, -4, 1, 0, -50521, 7936, -723, 56, -5, 1, 0, 2702765, -353792, 25953, -1504, 85, -6, 1, 0, -199360981, 22368256, -1376643, 64256, -2705, 120, -7, 1, 0, 19391512145, -1903757312, 101031873, -3963904, 134185, -4416, 161, -8, 1
Offset: 0
Examples
Array starts: [0] 1, 0, 0, 0, 0, 0, 0, 0, ... A000007 [1] 1, -1, 5, -61, 1385, -50521, 2702765, -199360981, ... A028296 [2] 1, -2, 16, -272, 7936, -353792, 22368256, -1903757312, ... A000182 [3] 1, -3, 33, -723, 25953, -1376643, 101031873, -9795436563, ... A326328 [4] 1, -4, 56, -1504, 64256, -3963904, 332205056, -36246728704, ... [5] 1, -5, 85, -2705, 134185, -9451805, 892060285, -108357876905, ... [6] 1, -6, 120, -4416, 249600, -19781376, 2078100480, -278400270336, ... A045944, Seen as a triangle: [0] [1] [1] [0, 1] [2] [0, -1, 1] [3] [0, 5, -2, 1] [4] [0, -61, 16, -3, 1] [5] [0, 1385, -272, 33, -4, 1] [6] [0, -50521, 7936, -723, 56, -5, 1] [7] [0, 2702765, -353792, 25953, -1504, 85, -6, 1]
Links
- Eric Weisstein's World of Mathematics, Mittag-Leffler Function
Crossrefs
Programs
-
Mathematica
cl[m_, p_, len_] := CoefficientList[ Series[FunctionExpand[MittagLefflerE[m, z]^p], {z, 0, len}], z]; MLPower[m_, 0, len_] := Table[KroneckerDelta[0, n], {n, 0, len - 1}]; MLPower[m_, n_, len_] := cl[m, n, len - 1] (m Range[0, len - 1])!; For[n = 0, n < 8, n++, Print[MLPower[2, -n, 8]]]
-
Sage
def MLPower(m, p, len): if p == 0: return [p^k for k in (0..len-1)] f = [i/m for i in (1..m-1)] h = lambda x: hypergeometric([], f, (x/m)^m) g = [v for v in taylor(h(x)^p, x, 0, (len-1)*m).list() if v != 0] return [factorial(m*k)*v for (k, v) in enumerate(g)] for p in (0..6): print(MLPower(2, -p, 9))