This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326330 #8 Jun 28 2019 21:14:03 %S A326330 1,1,2,4,8,30,654 %N A326330 Number of simple graphs with vertices {1..n} whose nesting edges are connected. %C A326330 Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d. A graph has its nesting edges connected if the graph whose vertices are the edges and whose edges are nesting pairs of edges is connected. %H A326330 Gus Wiseman, <a href="/A326330/a326330.png">The a(5) = 30 nesting-connected simple graphs</a>. %t A326330 nesXQ[stn_]:=MatchQ[stn,{___,{x_,y_},___,{z_,t_},___}/;x<z<t<y||z<x<y<t]; %t A326330 nestcmpts[stn_]:=csm[Union[List/@stn,Select[Subsets[stn,{2}],nesXQ]]]; %t A326330 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A326330 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[nestcmpts[#]]<=1&]],{n,0,5}] %Y A326330 The covering case is the inverse binomial transform A326331. %Y A326330 Graphs whose crossing edges are connected are A324328. %Y A326330 Cf. A006125, A007297, A054726, A099947, A117662, A136653, A324328. %Y A326330 Cf. A326210, A326293, A326335, A326336, A326337, A326338, A326339. %K A326330 nonn,more %O A326330 0,3 %A A326330 _Gus Wiseman_, Jun 27 2019