cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326332 Number of integer partitions of n with unsortable prime factors.

This page as a plain text file.
%I A326332 #5 Jun 28 2019 21:14:17
%S A326332 0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,5,9,14,22,33,50,71,100,140,196,265,360,
%T A326332 480,641,842,1104,1432,1855,2378,3040,3858,4888,6146,7708,9616,11969,
%U A326332 14818,18305,22511,27629,33773,41191,50069,60744,73453,88645,106681
%N A326332 Number of integer partitions of n with unsortable prime factors.
%C A326332 An integer partition has unsortable prime factors if there is no permutation (c_1,...,c_k) of the parts such that the maximum prime factor of c_i is at most the minimum prime factor of c_{i+1}. For example, the partition (27,8,6) is sortable because the permutation (8,6,27) satisfies the condition.
%F A326332 A000041(n) = a(n) + A326333(n).
%e A326332 The a(12) = 1 through a(17) = 14 partitions:
%e A326332   (6,6)  (10,3)   (6,6,2)    (6,6,3)      (10,6)         (14,3)
%e A326332          (6,6,1)  (10,3,1)   (10,3,2)     (6,6,4)        (6,6,5)
%e A326332                   (6,6,1,1)  (6,6,2,1)    (10,3,3)       (10,4,3)
%e A326332                              (10,3,1,1)   (6,6,2,2)      (10,6,1)
%e A326332                              (6,6,1,1,1)  (6,6,3,1)      (6,6,3,2)
%e A326332                                           (10,3,2,1)     (6,6,4,1)
%e A326332                                           (6,6,2,1,1)    (10,3,2,2)
%e A326332                                           (10,3,1,1,1)   (10,3,3,1)
%e A326332                                           (6,6,1,1,1,1)  (6,6,2,2,1)
%e A326332                                                          (6,6,3,1,1)
%e A326332                                                          (10,3,2,1,1)
%e A326332                                                          (6,6,2,1,1,1)
%e A326332                                                          (10,3,1,1,1,1)
%e A326332                                                          (6,6,1,1,1,1,1)
%t A326332 Table[Length[Select[IntegerPartitions[n],!OrderedQ[Join@@Sort[First/@FactorInteger[#]&/@#,OrderedQ[PadRight[{#1,#2}]]&]]&]],{n,0,20}]
%Y A326332 Sortable integer partitions are A326333.
%Y A326332 Unsortable set partitions are A058681.
%Y A326332 Unsortable normal multiset partitions are A326211.
%Y A326332 MM-numbers of unsortable multiset partitions are A326258.
%Y A326332 Cf. A000041, A000108, A001055, A056239, A112798, A326209, A326212.
%K A326332 nonn
%O A326332 0,14
%A A326332 _Gus Wiseman_, Jun 27 2019