This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326332 #5 Jun 28 2019 21:14:17 %S A326332 0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,5,9,14,22,33,50,71,100,140,196,265,360, %T A326332 480,641,842,1104,1432,1855,2378,3040,3858,4888,6146,7708,9616,11969, %U A326332 14818,18305,22511,27629,33773,41191,50069,60744,73453,88645,106681 %N A326332 Number of integer partitions of n with unsortable prime factors. %C A326332 An integer partition has unsortable prime factors if there is no permutation (c_1,...,c_k) of the parts such that the maximum prime factor of c_i is at most the minimum prime factor of c_{i+1}. For example, the partition (27,8,6) is sortable because the permutation (8,6,27) satisfies the condition. %F A326332 A000041(n) = a(n) + A326333(n). %e A326332 The a(12) = 1 through a(17) = 14 partitions: %e A326332 (6,6) (10,3) (6,6,2) (6,6,3) (10,6) (14,3) %e A326332 (6,6,1) (10,3,1) (10,3,2) (6,6,4) (6,6,5) %e A326332 (6,6,1,1) (6,6,2,1) (10,3,3) (10,4,3) %e A326332 (10,3,1,1) (6,6,2,2) (10,6,1) %e A326332 (6,6,1,1,1) (6,6,3,1) (6,6,3,2) %e A326332 (10,3,2,1) (6,6,4,1) %e A326332 (6,6,2,1,1) (10,3,2,2) %e A326332 (10,3,1,1,1) (10,3,3,1) %e A326332 (6,6,1,1,1,1) (6,6,2,2,1) %e A326332 (6,6,3,1,1) %e A326332 (10,3,2,1,1) %e A326332 (6,6,2,1,1,1) %e A326332 (10,3,1,1,1,1) %e A326332 (6,6,1,1,1,1,1) %t A326332 Table[Length[Select[IntegerPartitions[n],!OrderedQ[Join@@Sort[First/@FactorInteger[#]&/@#,OrderedQ[PadRight[{#1,#2}]]&]]&]],{n,0,20}] %Y A326332 Sortable integer partitions are A326333. %Y A326332 Unsortable set partitions are A058681. %Y A326332 Unsortable normal multiset partitions are A326211. %Y A326332 MM-numbers of unsortable multiset partitions are A326258. %Y A326332 Cf. A000041, A000108, A001055, A056239, A112798, A326209, A326212. %K A326332 nonn %O A326332 0,14 %A A326332 _Gus Wiseman_, Jun 27 2019